RELAZIONE GEOLOGICA

concorso di progettazione a procedura aperta in due gradi in modalità informatica

Via Mazzini 25 - 62014 Corridonia Tel. 0733/433223 - 3386562763

PROVINCIA DI MACERATA

COMUNE DI PETRIOLO

RELAZIONE GEOLOGICA - SISMICA CON ANALISI RSL AI FINI DELLA VERIFICA DELLA VULNERABILITA' SISMICA SCUOLE: MEDIA MARCO MARTELLO - ELEMENTARE G. NOBILI

VIA LEOPARDI I COMMITTENTE: COMUNE DI PETRIOLO

CORRIDONIA, GIUGNO 2018

INDICE

PREMESSE

Bibliografia

1

1.1

Analisi dei vincoli e delle emergenze di competenza presenti Indagini	
GEOLOGIA E GEOMORFOLOGIA Acque superficiali e profonde	
RICOSTRUZIONE STRATIGRAFICA DEL SOTTOSUOLO (MODELLO G Serie litostratigrafica rilevata Caratteristiche geotecniche significative	EOLOGICO)
 Disaggregazione Scelta dei periodi e estrazione degli spettri Analisi di risposta sismica locale SCUOLA M. MARTELLO 	lio
EGATI	
ESTRATTO CTR sez. 303140 "PETRIOLO" - OROGRAFIA DEL SITO	scala 1:10.000
ESTRATTO CTR CARTA GEOLOGICA REGIONALE sez. 303140	scala 1:10.000
ESTRATTO Carta del Rischio idrogeologico PAI – TAVOLA RI 52 b	
ESTRATTO Sistema Informativo Territoriale – VINCOLI	
ESTRATTI CARTE MZS III	scala 1:5.000
PLANIMETRIA ED UBICAZIONE SONDAGGI	scala 1:1.000
SONDAGGIO, PROVE HVSR REALIZZATE E INVERSIONE MASW-HVSR	
SONDAGGIO, PROVE HVSR REALIZZATE E INVERSIONE MASW-HVSR SONDAGGI ACQUISITI	
	Acque superficiali e profonde RICOSTRUZIONE STRATIGRAFICA DEL SOTTOSUOLO (MODELLO G Serie litostratigrafica rilevata Caratteristiche geotecniche significative STIMA DELLA PERICOLOSITÀ SISMICA LOCALE Analisi morfologica del sito Analisi del terreno e valutazione della velocità equivalente dell'onda di tag Analisi di Risposta Sismica Locale (RSL) 1 Stima dell'accelerazione di base del sito di progetto (ag) 2 Disaggregazione 3 Scelta dei periodi e estrazione degli spettri 4 Analisi di risposta sismica locale SCUOLA M. MARTELLO 5 Analisi di risposta sismica locale SCUOLA G. GINOBILI LEGATI ESTRATTO CTR sez. 303140 "PETRIOLO" - OROGRAFIA DEL SITO ESTRATTO CTR CARTA GEOLOGICA REGIONALE sez. 303140 ESTRATTO Carta del Rischio idrogeologico PAI – TAVOLA RI 52 b ESTRATTO Sistema Informativo Territoriale – VINCOLI ESTRATTI CARTE MZS III

RELAZIONE

1 PREMESSE

Nella presente relazione vengono esposti i risultati relativi all'indagine geologico-geofisica con analisi della RSL (Risposta Sismica Locale) eseguita dal Dott. Geol. Giuseppe Flora per conto del Comune di Petriolo (MC) con Determina n. 33 del 15/05/2018, sui terreni di sedime delle scuole Marco Martello e G. Ginobili ubicate in via Leopardi n. 1 nel Comune di Petriolo (MC), ai fini della verifica della vulnerabilità sismica.

1.1 Bibliografia

La base topografica su cui sono state redatte le carte tematiche è data dalla CARTA TECNICA REGIONALE (Sezione 303140 Petriolo - scala 1:10.000).

- Microzonazione Sismica di livello III Comune di Petriolo
- Rapporto conclusivo sulla valutazione degli effetti d'amplificazione dinamica locale, delle località campione più danneggiate, dalla sequenza di terremoti dell'Umbria - Marche 1997-1998.
- PAI Piano stralcio di bacino per l'Assetto Idrogeologico Carta del Rischio, scala 1:10.000.
- P.R.G Comune di Petriolo (2.000).
- Relazione Geologica, Geotecnica e Sismica redatta per l'adeguamento della scuola elementare
 G. Ginobili Comune di Petriolo Geol. Paola Rogani.
- Norme Tecniche per le Costruzioni DM 17.01.2018.

Il presente documento è stato redatto in conformità e nel pieno rispetto delle seguenti normative vigenti:

- art. 13 della Legge n. 64 del 02.02.1974;
- articoli 10 e 11 della L.R. n. 33/1984 (D.P.R. 6 giugno 2001);
- art. 16 L.R. 34/92, cir. Reg. Marche n14/90 e n. 15/90;
- D.M. 11.03.88 lettera H;
- Norme di attuazione del P.A.I.;
- Norme Tecniche per le Costruzioni DM 17.01.2018;
- Deliberazione della Giunta Regionale n. 136 del 17 febbraio 2004 Indicazioni generali per la prima applicazione dell'Ordinanza del Presidente del Consiglio dei Ministri n, 3274 del 20 marzo 2003. Individuazione e formazione dell'elenco delle zone sismiche nella Regione Marche;
- Delibera di Giunta Regionale n. 53 del 27/1/2014) LINEE GUIDA (Titolo I Paragrafo 1.4) "A"
 SVILUPPO DELLA VERIFICA DI COMPATIBILITÀ IDRAULICA "B" SVILUPPO DELLA
 VERIFICA PER LA INVARIANZA IDRAULICA;
- Circolare 9 gennaio 1996, n. 218/24/3. Legge 2 febbraio 1974, n. 64. Decreto del Ministro dei Lavori Pubblici 11 marzo 1988. Istruzioni applicative per la redazione della relazione geologica e della relazione geotecnica;

- Circolare dei Ministro dei LL.PP. 24 settembre 1988, n. 30483. Istruzioni riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione;
- Decreto Ministeriale 10 febbraio 1983 Aggiornamento delle zone sismiche della regione Marche;
- Allegato alla Legge del 25 novembre 1962, n. 1684 (modificato ed aggiornato con i successivi Decreti Ministeriali). Elenco delle località sismiche di prima e seconda categoria;
- DPR 120/2017 Terre e rocce da scavo.

I riferimenti di cui sopra potrebbero non essere esaustivi.

Ulteriori disposizioni di legge, norme e deliberazioni in materia, anche se non espressamente richiamati, si considerano acquisiti.

1.2 Analisi dei vincoli e delle emergenze di competenza presenti

Dalla lettura della bibliografia (parg. 1.2) e delle tavole tematiche attraverso il SIT – Portale Cartografico Provinciale (allegato 4) che permette la consultazione in rete della cartografia e di tutta la vincolistica ambientale nazionale, regionale (PPAR) e provinciale (PTC) presente nell'intero territorio della provincia di Macerata, del P.R.G e del Piano per l'Assetto Idrogeologico (PAI) della Regione Marche, si evince che nell'area in esame è presente una perimetrazione del suddetto PAI (tav RI 52 b – allegato 3). Tale perimetrazione interessa lo spigolo Nord – Ovest della scuola G. Ginobili e si estende lungo il versante Nord, rappresenta una area a rischio frana classificata come P2 – R2 e quiescente.

1.3 Indagini

Per la caratterizzazione geotecnica e sismica dell'area di fondazione (modello geologico) è stato eseguito dalla Ditta "Porrà Guido & C. s.r.l." un sondaggio geognostico (S3) spinto fino alla profondità di 37 ml (allegato 7), sono state realizzate n. 3 indagini sismiche con tromografo digitale HVSR dal Dott. Geol. Lucarelli Costantino, sono stati poi acquisiti, dalla relazione Geologica, Geotecnica e Sismica redatta per l'adeguamento della scuola elementare G. Ginobili – Comune di Petriolo – Geol. Paola Rogani, n. 2 sondaggi geognostici (S1 e S2) a carotaggio continuo spinti fino alla profondità di 26 ml da p.c. e relativa prova down-hole in S1 e lo svolgimento di n. 2 prove SPT eseguite una alla profondità di 3.00 ml da p.c. e l'altra a 10.80 ml da p.c. e i dati di prove ed analisi di laboratorio effettuate su n. 1 campione indisturbato prelevato a 4,50 ml da p.c. (allegato 8), dalla Microzonazione Sismica di livello III è stato acquisito n. 1 sondaggio geognostico (1 DH) spinto fino alla profondità di 36 ml da p.c. e relativa prova down-hole e n. 1 indagine sismica con tromografo digitale HVSR e n. 1 prova geofisica sismica MASW (allegato 9).

Le ubicazioni delle suddette indagini sono riportate nell'allegato 6.

Quanto sopra permette di inquadrare l'area dal punto di vista geologico, idrogeologico e geomorfologico, di definire i parametri fisico-meccanici significativi per il modello geologico (Sezioni, allegato 10) e per definire una caratterizzazione litotecnica (paragrafi 3.1 – 3.2) delle unità presenti entro il volume di terreno che si ritiene interessato dalle azioni indotte dai manufatti in questione.

2 GEOLOGIA E GEOMORFOLOGIA

L'area studiata fa parte dell'avanfossa periadriatica pliocenica dove si rinvengono depositi pelitici ed arenacei presenti in varie litofacies ed associazioni.

Le unità litostratigrafiche plioceniche affioranti nel territorio comunale di Petriolo, costituiscono una monoclinale con strati immergenti a E-NE di circa 10 gradi.

Detta monoclinale è dislocata da faglie le principali delle quali hanno andamento WSW-ENE (antiappenninica), due di queste si trovano a sud del paese e dislocano gli orizzonti arenaceo-pelitici e pelitico-arenacei; una terza, con molta probabilità, corre lungo la valle del T. Cremone; con direzione circa perpendicolare alle precedenti è presente una faglia orientata NNW-SSE (appenninica) che passa a ridosso del centro abitato del Comune di Petriolo, e che si estende dal T. Cremone fino al T. Fiastra, da osservazioni principalmente stratigrafiche, può essere considerata una faglia normale e ribassante a NE, in prossimità del centro storico, questa faglia sembra porre a contatto i sedimenti marini torbiditici con i depositi eluvio colluviali antichi.

L'area indagata è ubicata ad Est rispetto il nucleo urbano di Petriolo che insite alla sommità anticlinalica di una dorsale collinare arenacea ed arenaceo pelitica, tale struttura è ricoperta ai bordi da depositi eluvio colluviali anche di notevole spessore.

Il rilevamento geologico e geomorfologico e i sondaggi geognostici eseguiti e reperiti hanno permesso di verificare la presenza nel sottosuolo dell'area in esame di uno spessore di oltre 20 ml di aggregato colluviale stratificamente sovrapposto alla associazione arenaceo pelitica riferibile cronologicamente al Pleistocene inferiore.

L'aggregato colluviale rappresenta coltri di copertura caotiche originatesi nel Quaternario e granulometricamente composte da associazioni assolutamente disomogenee di elementi di natura argillosa limosa e sabbiosa con generale prevalenza degli elementi argillosi e limosi rispetto a quelli sabbiosi. Trattasi in genere di ammassi caotici caratterizzati a luoghi dalla presenza di orizzonti argillosi di colore marrone scuro o nerastro dotati di una certa continuità spaziale (paleosuoli).

La superficie di contatto tra le coltri e la formazione in posto è in genere la conseguenza di fenomeni di alterazione e di erosione e presenta quindi un andamento irregolare.

Stratificamente sottostante la coltre colluviale si rinvengono sedimenti ascrivibili all'associazione arenaceo pelitica (Pleistocene inferiore) costituita da una sequenza regolare e alternante di strati argilloso-siltosi grigiastri a luoghi discontinui dello spessore di 5-8 cm e di strati sabbioso-arenacei prevalenti dello spessore variabile da 5 a 15 cm. Trattasi di sedimenti di deposizione in ambiente Marino epibatiale.

A luoghi gli strati sabbiosi si presentano ben addensati e litificati dando origine a trovanti arenacei delle dimensioni di circa 5 cm.

L'area si trova in una zona di crinale pianeggiante, urbanizzata, che si raccorda verso Sud con la strada Provinciale e verso Nord con Via Gramsci tramite un versante urbanizzato, caratterizzato da scarpate antropiche, opere di sostegno e superfici livellate. Tale versante è interessato in parte da una perimetrazione del PAI (allegato 3 – par. 1.2) che individua un'ampia area a rischio frana classificata P2

- R2 e quiescente, comunque il rilevamento geologico non ha mostrano la conferma di ciò, non si rilevano segni di movimenti di massa sia superficiali sia profondi, non sono presenti subsidenze con ristagni d'acqua o deformazioni con contropendenze.

Non sono da prevedere, nelle condizioni idrogeologiche tutt'ora presenti, per un intorno significativo agli edifici in oggetto condizioni di instabilità. Nel momento in cui cambiano le condizioni idrogeologiche per interventi sul versante o sulle strutture si dovrà eseguire la verifica di stabilità.

La serie litostratigrafica nella zona geologica di interesse viene così schematizzata:

TABELL	A 1 - SERIE LITOSTRA	ATIGRAFICA					
SPESSORE	ORIZZONTE	ETA'	LITOLOGIA				
			COPERTURA				
20 - 30 ml	Eluvio – colluvioni (MUSb2 – prog. CARG) - compresa la parte più alterata e diage- nizzata della Forma- zione, riscontrata so- prattutto nei son- daggi a Nord	Olocene	limi inorganici, sabbie fini limose e argillose, limi argillosi (ML)				
			SUBSTRATO				
Notevole	Formazione delle Argille Azzurre – Litofacies arenaceo pelitica (FAA5d – prog. CARG)	Zancleano p.p. Santerniano	depositi marini, sedimentari substrato arenaceo pelitico stratificato alterato e/o fratturato (SFALS)				

2.1 Acque superficiali e profonde

Le acque superficiali presenti nell'area sono quelle meteoriche e quelle antropiche, sono regimate dal reticolo drenante definito dalle canalette stradali e dalla rete fognaria.

Per quanto riguarda le acque profonde durante l'esecuzione dei sondaggi geognostici eseguiti e reperiti non sono state rilevate venute idriche ad eccezione di una modesta presenza di acqua nel sondaggio S3 a partire dai 25 ml di profondità.

L'associazione arenaceo pelitica è caratterizzata da una permeabilità per porosità con valore medio alto del coefficiente di permeabilità K il quale nella componente sabbiosa ricade nel range compreso tra 10⁻⁵ e 10⁻⁶ m/s, il valore del coefficiente di permeabilità e inoltre variabile in relazione allo spessore degli strati sabbiosi e dal loro grado di cementazione.

La presenza frequente di strati sabbiosi può determinare l'instaurarsi di falde idriche localizzate a quote diverse e dotate di continuità spaziale, le sabbie costituiscono veicoli di drenaggio delle acque di infiltrazione come dimostrano la presenza di macule rossastre di alterazione e di concrezioni carbonatiche.

Gli strati argillosi della Formazione arenacea sono praticamente impermeabili con un coefficiente di permeabilità K di circa $10^{-9} - 10^{-11}$ m/s.

3 RICOSTRUZIONE STRATIGRAFICA DEL SOTTOSUOLO - MODELLO GEOLOGICO

Nel volume di terreno, in cui si ritengono ancora significative le variazioni dello stato tensionale, indotte dal manufatto, e delle strutture limitrofe, si possono distinguere le seguenti unità.

3.1 Serie litostratigrafica rilevata

Per quanto sopra, si distinguono nell'area in studio, entro il volume significativo degli interventi in progetto, i seguenti orizzonti litologico-tecnici con i relativi parametri fisico-meccanici significativi per il presente lavoro.

Litotipo a "Colluvioni"

Aggregato limo sabbioso argilloso di colore nocciola sovrapposto ad argille sabbiose grigie più consistenti, mediamente umido, molto compatto e plastico, a luoghi si rinvengono livelli sabbiosi ben definiti. Materiale nel complesso privo di struttura, caotico, disomogeneo e rimaneggiato.

Litotipo rinvenuto in tutti i sondaggi con i seguenti spessori: S1(DH) 18 m; S2 23 m; 1(DH) 24 m; S3 25 m.

Litotipo b "Eluvium - fascia alterazione"

Trattasi della copertura eluviale compresa la fascia maggiormente diagenizzata della Formazione che la sostiene, stratificazione di argilla e sabbia mal distinta.

Litotipo rinvenuto nei sondaggi S1 da 18 m a 24 m e 1(DH) da 24 m a 32,5 m.

<u>Litotipo c</u> "Associazione arenaceo pelitica":

Depositi sabbiosi in strati con uno spessore variabile di 5-15 cm molto addensati, di colore ocra, separati a luoghi da livelli di argilla grigia dello spessore di 5-8 cm.

Presente in tutti i sondaggi fino a termine.

3.2 Caratteristiche geotecniche significative

Dai risultati delle indagini eseguite ed acquisite (par. 1.3 – allegati 8 e 9), delle informazioni acquisite (bibliografia ed esperienze personali) e per analogia con unità geotecniche simili si possono

dare i seguenti parametri geotecnici significativi per il presente lavoro.

Colluvioni:

Peso di volume	γ	= 1.89	g/cm ³
Angolo di attrito	ф	= 27,8	0
Coesione non drenata	Cu	= 1.0	Kg/cm ²
Modulo Edometrico (98,1-196,1 KPA)	Ed	= 6950	KPA
Indice plastico	lp	= 21	%
Velocità onde sismiche SH	Vs	= 396 (0-24 m)	m/s

Eluvium - fascia alterazione:

Peso di volume	γ	= 2.00	g/cm ³
Angolo di attrito	ф	= 27	٥
Coesione non drenata	Cu	= 1.0 - 1.5	Kg/cm ²
Modulo Edometrico (98,1-196,1 KPA)	Ed	= 100 - 200	Kg/cm ²
Velocità onde sismiche SH	Vs	= 396 (24-29 m)	m/s
		491 (29-32 m)	

Associazione arenaceo pelitica:

Peso di volume	γ	= 2.05	g/cm ³
Angolo di attrito	ф	= 25° - 27°	0
Coesione non drenata*	Cu	= 1.0 -> 2.0	Kg/cm ²
Coesione drenata*	C'	= 0.1 - 0.3	
Modulo Edometrico	Ed	= 200 – 300	Kg/cm ²
Indice plastico	lp	= 25 - 26	%
Velocità onde sismiche SH	Vs	= 621 (32-36 m)	m/s

^{*} riferito alla frazione fine

4 STIMA DELLA PERICOLOSITA' SISMICA LOCALE

L'area in ambito regionale ricade in aree a rischio sismico elevato (Livello A – Circolare n°15 del 28/8/90), le locali condizioni geomorfologiche e geotecniche, non rientrano in alcuna delle situazioni di maggiore pericolosità sismica locale, elencate nella tab. 2 della sopra citata circolare, pertanto, si ritiene che nell'area in esame, non sussistono condizioni di rischio sismico superiori a quelle del livello A (rischio sismico elevato). L'Ordinanza P.C.M. n. 3274 del 23.03.2003 riclassifica l'intero territorio nazionale. In tale quadro l'area del comune di Petriolo ricade in zona sismica di classe 2, pertanto:

- accelerazione orizzontale con probabilità di superamento pari al 10% in 50 anni [a_g/g] = 0,25
- accelerazione orizzontale di ancoraggio dello spettro di risposta elastico $[a_0/g] = 0.15 0.25$.

Con l'entrata in vigore del D.M. 14 gennaio 2008 la stima della pericolosità sismica viene definita mediante un approccio "sitodipendente" e non più tramite un criterio "zona dipendente". L'azione sismica di progetto in base alla quale valutare il rispetto dei diversi stati limite presi in considerazione viene definita partendo dalla "pericolosità di base" del sito di costruzione, che è l'elemento essenziale di

conoscenza per la determinazione dell'azione sismica.

4.1 Analisi morfologica del sito

L'area si trova in una zona di crinale pianeggiante, delimitata verso Sud e verso Nord da versanti con inclinazioni medie > 15°; il sito può essere quindi considerato (tabella 3.2.III delle NTC 2018) di **categoria T2.**

4.2 Analisi del terreno e valutazione della velocità equivalente dell'onda di taglio

Le misure sismiche effettuate in sito attraverso la prove HVSR, MASW e Down-hole, hanno fornito i dati sulle caratteristiche geofisiche del sito investigato.

Dall'analisi dei profili delle velocità, il valore di **Vs,eq** ricavato è di **400 m/s**, pertanto si rientra nella condizione di un sottosuolo appartenente alla **categoria B** (Tab. 3.2.II delle NTC 2018).

Non sussistono, inoltre, condizioni idrogeologiche e litologiche di fenomeni di liquefazione nel sottosuolo.

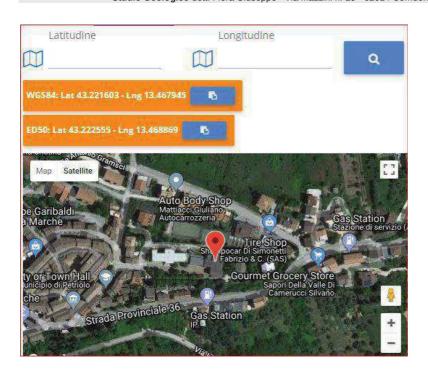
4.3 Analisi di Risposta Sismica Locale (RSL)

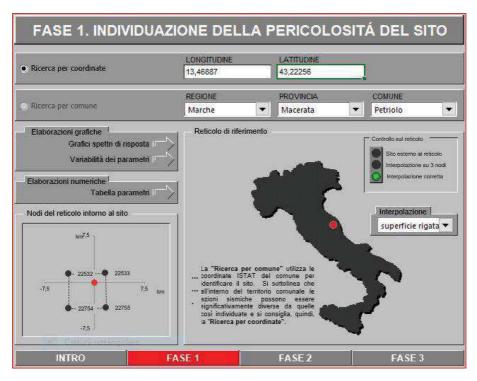
Di seguito viene illustrata l'analisi di Risposta Sismica Locale (RSL) per i terreni in questione (scuole Marco Martello e G. Ginobili).

La valutazione della risposta sismica locale mediante analisi 1D permette di definire una realistica risposta sismica stratigrafica di terreni non affetti da problematiche bidimensionali (sia sepolte sia topografiche).

Questo approccio è ritenuto la via ufficiale dalle NTC2018 (Cap. 3.2.2).

Inoltre la circolare 55 del commissario per la ricostruzione impone che nei siti ove sia stata effettuata la microzonazione di terzo livello il confronto fra i risultati della stessa e la determinazione semplificata della categoria di sottosuolo. L'ordinanza individua anche le condizioni per il quale lo spettro previsto dall'approccio semplificato può ritenersi significativamente meno conservativo.

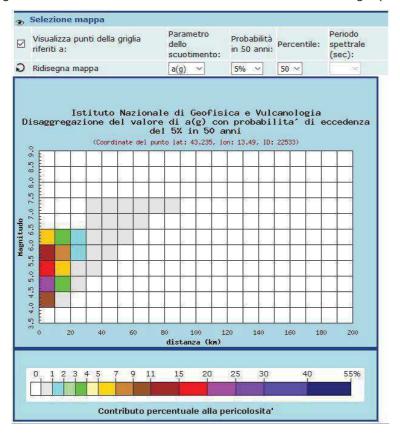

Nel caso specifico il tale confronto è stato effettuato e ha dato esito positivo.


In questo caso l'estrazione degli spettri deve essere fatta per vari tempi di ritorno in modo da poter costruire la curva sulla quale cercare l'accelerazione limite per definire l'indice di rischio.

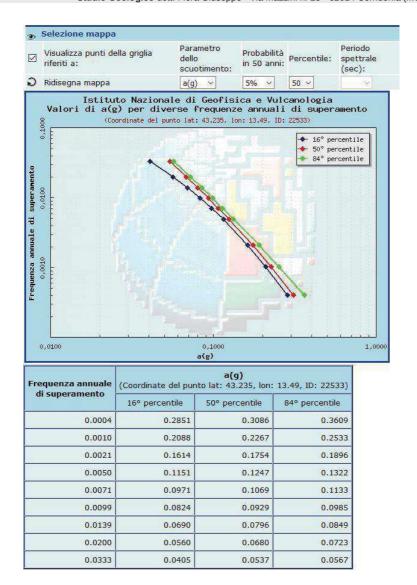
4.3.1 Stima dell'accelerazione di base del sito di progetto (ag)

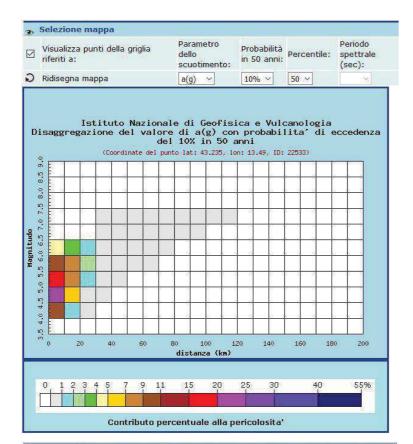
A tale valore di ag verrà scalato ognuno dei 7 accelerogrammi costituenti l'input sismico.

Coordinate ED50 del sito ricavate col software Geostru PS.

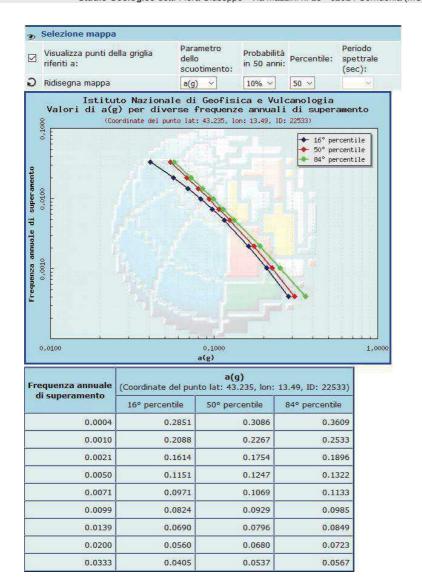


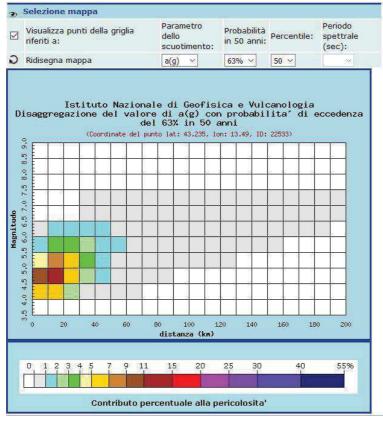
SLATO LIMITE	T _R [anni]	a _e [9]	F. [-]	T _c [s]
A. A	12 19	0.000	0.407	0.000
SLO	30	0,054	2,451	0,273
- (a)		0.066	2,437	0,288

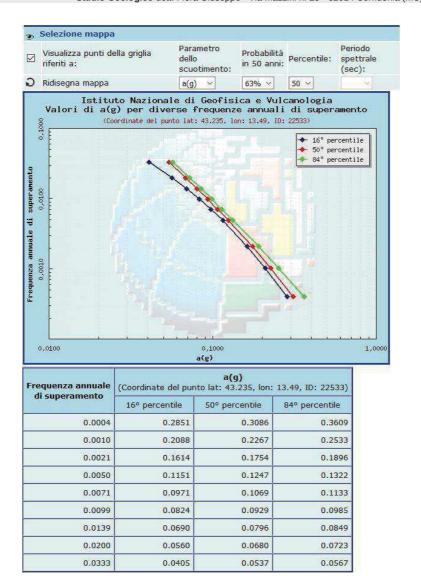

SLD	75	0,082	2,441	0,298
SLD	101	0,093	2,422	0,312
SLD	151	0,111	2,422	0,319
SLV	475	0,175	2,425	0,337
SLV	712	0,202	2,446	0,342
SLC	975	0,226	2,463	0,345
SLC	1462	0,259	2,495	0,348

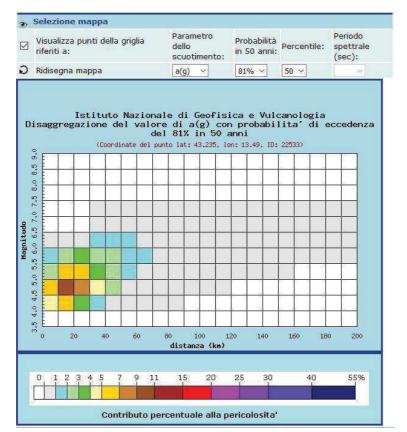

4.3.2 Disaggregazione

Parametri di disaggregazione sismica per il sito in esame sono ottenuti consultando la pagina web-gis realizzata dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV).

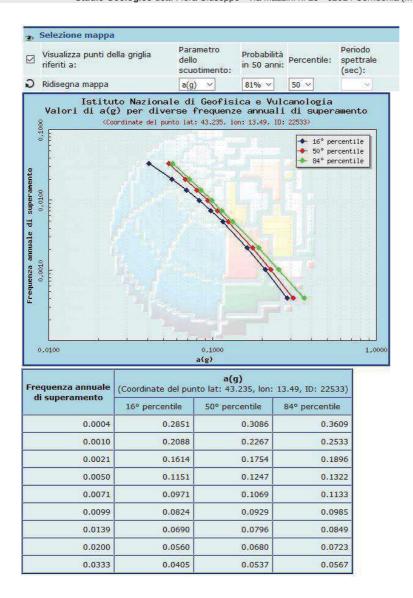

	Dis	aggrega					bilita' di 5, lon: 13			% in 50 a	nni		
Distanza in km		Magnitudo											
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8,5-9.0		
0-10	0.000	9,900	24.000	19.800	13.700	6.360	0.000	0.000	0.000	0.000	0.000		
10-20	0.000	0.619	3.460	6.030	7,290	3.810	0.000	0.000	0.000	0.000	0.000		
20-30	0.000	0.000	0.040	0.685	1.890	1.250	0.000	0.000	0.000	0.000	0.000		
30-40	0.000	0.000	0.000	0.011	0.337	0.380	0.031	0.031	0.000	0.000	0.000		
40-50	0.000	0.000	0.000	0.000	0.013	0.068	0.081	0.100	0.000	0.000	0.000		
50-60	0.000	0.000	0.000	0.000	0.000	0.001	0.033	0.068	0.000	0.000	0.000		
69-70	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.036	0.000	0.000	0.000		
70-80	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.000	0.000	0.000		
80-90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000		
90-100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
100-110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
110-120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000		
120-130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
130-140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
140-150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
150-160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
160-170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
170-180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
180-190	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
190-200	0.000	0.000	0.000	0.000	0.000	0.000	6.000	0.000	0.000	0.000	0.000		




	Disa	ggregaz					oilita' di e s, lon: 13			% in 50	anni		
Distanza in km		Magnitudo											
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0		
0-10	0.000	10.500	22.700	16,100	9.740	4.050	0.000	0.000	0.000	0.000	0.000		
10-20	0.000	1.670	6.160	7.800	7.640	3.470	0.800	0.000	0.000	0.000	0.000		
20-30	0.000	0.017	0.553	1.830	2,880	1,570	0.000	0.000	0.000	0.000	0.000		
30-40	0.000	0.000	0.004	0.263	0.949	0.672	0.047	0.038	0.000	0.000	0.000		
40-50	0.000	0.000	0.000	0.006	0.174	0.283	0.150	0.136	0.000	0.000	0.000		
50-60	0.000	0.000	0.000	0.000	0.015	0.078	0.102	0.112	0.000	0.000	0.000		
60-70	0.000	0.000	0.000	0.000	0.000	0.009	0.053	0.077	0.000	0.000	0.000		
70-80	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.049	0.000	0.000	0.00		
80-90	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.028	0.000	0.000	0:00		
90-100	0.000	0.000	0.000	0.000	0.000	0.000	0.800	0.011	0.000	0.000	0.00		
100-110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.00		
110-120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00		
120-130	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00		
130-140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.000	0.000		
140-150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00		
150-160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
160-170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00		
170-180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
180-190	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00		
190-200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00		


Valori medi									
Magnitudo	Epsilon								
5.210	10.000	0.835							

	Dis	aggregaz					oilita' di e 5, Ion: 13			% in 50	anni	
Distanza in km	Magnitudo											
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0	
0-10	0.000	6.230	9.760	4.490	1.900	0.608	0.000	0.000	0.000	0.000	0.000	
10-20	0.000	5,580	11.400	7.300	3.980	1.190	0.000	0.000	0.000	0.000	0.000	
20-30	0.000	2.410	6,240	5.460	3.870	1.280	0.000	0.000	0.000	0.000	0.000	
30-40	0.000	0.919	2.970	3,360	2.970	1.170	0.061	0.028	0.000	0.000	0.000	
40-50	0.000	0.236	1.150	1.750	1.940	1.130	0.281	0.137	0.000	0.000	0.000	
50-60	0.000	0.032	0,372	0.873	1.190	0.887	0.319	0.172	0.000	0.000	0.000	
60-70	0.000	0,001	0.088	0.425	0.736	0.661	0.296	0.174	0.000	0.000	0.000	
70-80	0.000	0.000	0.014	0.184	0.456	0.487	0.259	0.166	0.000	0.000	0.000	
80-90	0.000	0.000	0.002	0.062	0.246	0.311	0.211	0.146	0.000	0.000	0.000	
90-100	0.000	0,000	0.000	0.016	0.116	0.174	0.141	0.104	0.000	0.000	0.000	
100-110	0.000	0.000	0.000	0.004	0.054	0.103	0.092	0.072	0.000	0.000	0.000	
110-120	0.000	0.000	0.000	0.001	0.025	0.052	0.062	0.052	0.000	0.000	0.000	
120-130	0.000	0.000	0.000	0.000	0.010	0.036	0.042	0.038	0.000	0.000	0.000	
130-140	0.000	0.000	0.000	0.000	0.004	0.018	0.030	0.028	0.000	0.000	0.000	
140-150	0.000	0.000	0.000	0.000	0.001	0.009	0.021	0.021	0.000	0.000	0.000	
150-160	0.000	0.000	0.000	0.000	0.000	0.004	0.015	0.017	0.000	0.000	0.000	
160-170	0.000	0.000	0.000	0.000	0.000	0.002	0.012	0.014	0.000	0.000	0.000	
170-180	0.000	0.000	0.000	0.000	0.000	0.001	0.008	0.011	0.000	0.000	0.000	
180-190	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.012	0.000	0.000	0.000	
190-200	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.010	0.000	0.000	0.000	



	Disa	aggrega		valore d dinate de						% in 50	anni		
Distanza in km		Magnitudo											
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0		
D- 10	0.000	4.640	5.880	2.950	1.190	0.374	0.000	0.000	0.000	0.000	0.000		
10-20	0.000	5.580	10.300	5.810	2.850	0.799	0.000	0.000	0.000	0.000	0.000		
20-30	0.000	3,140	7.180	5.330	3.270	0.985	0.000	0.000	0.000	0.000	0.000		
30-40	0.000	1.520	4.170	3.890	2.920	1.040	0.051	0.021	0.000	0.000	0.000		
40-50	0.000	0.610	2.070	2,430	2.230	1,140	0.251	0.108	0.000	0.000	0.000		
50-60	0.000	0.205	0.969	1.440	1.560	1.010	0.311	0.147	0.000	0.000	0.000		
60-70	0.000	0.044	0.427	0.854	1.090	0.828	0.313	0.160	0.000	0.000	0.000		
70-80	0,000	0.007	0.157	0.506	0.762	0.667	0,296	0.163	0.000	0.000	0.000		
80-90	0.000	0.000	0.042	0.261	0.464	0.460	0.258	0.153	0.000	0.000	0.000		
90-100	0.000	0.000	0.009	0.115	0.254	0.278	0.184	0,116	0.000	0.000	0.000		
100-110	0.000	0.000	0.002	0.049	0.149	0.179	0.127	0.085	0.000	0.000	0.000		
110-120	0.000	0,000	0.000	0,019	0.088	0.118	0.090	0.064	0.000	0.000	0.000		
120-130	0.000	0.000	0.000	0.007	0.051	0.077	0.066	0.049	0.000	0.000	0.000		
130-140	0,000	0.000	0.000	0,003	0.028	0.046	0.050	0.039	0.000	0.000	0.000		
140-150	0.000	0.000	0.000	0.001	0.015	0.029	0.037	0.030	0.000	0.000	0.000		
150+160	0.000	0.000	0.000	0.000	0.006	0.019	0.029	0.025	0.000	0.000	0.000		
160-170	0.000	0.000	0.000	0.000	0.002	0.013	0.024	0.021	0.000	0.000	0.000		
170-180	0.000	0.000	0.000	0.000	0.001	0.008	0.019	0.018	0.000	0.000	0.000		
180-190	0.000	0.000	0.000	0.000	0.001	0.007	0.020	0.020	0,000	0.000	0.000		
190-200	0.000	0.000	0.000	0.000	0.000	0.005	0.017	0.017	0.000	0.000	0.000		

 Valori medi

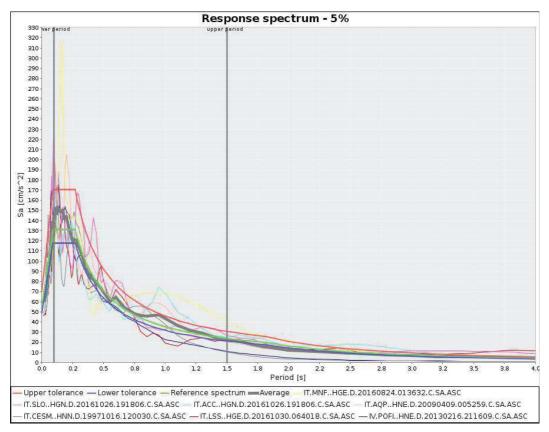
 Magnitudo
 Distanza
 Epsilon

 5.160
 30.300
 0.363

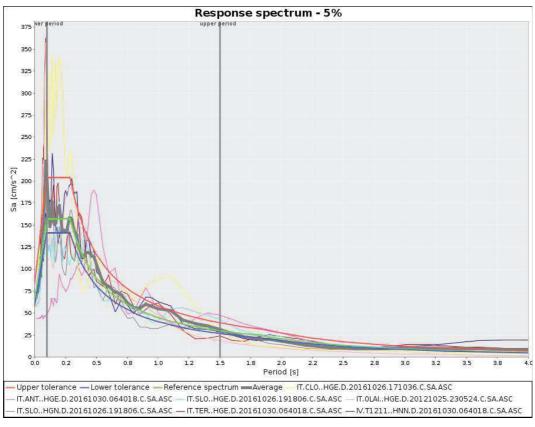
4.3.3 Scelta dei periodi e estrazione degli spettri

La celta dei periodi deve essere fatta in funzione della vita nominale (50 anni) e della classe d'uso dell'edificio (III) e attraverso questi bisogna individuare le coppie tempi di ritorno/accelerazione.

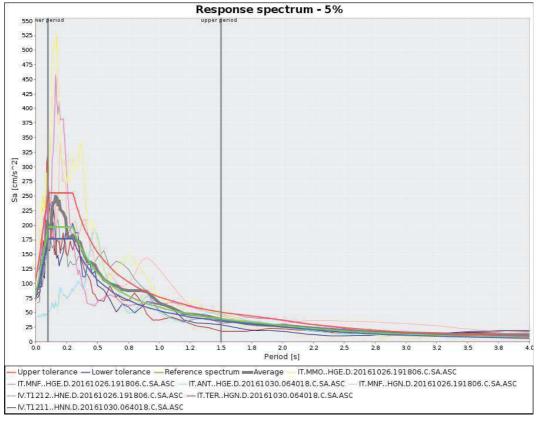
La curva che si dovrà costruire sarà simile a quella riportata nella circolare 617/09.

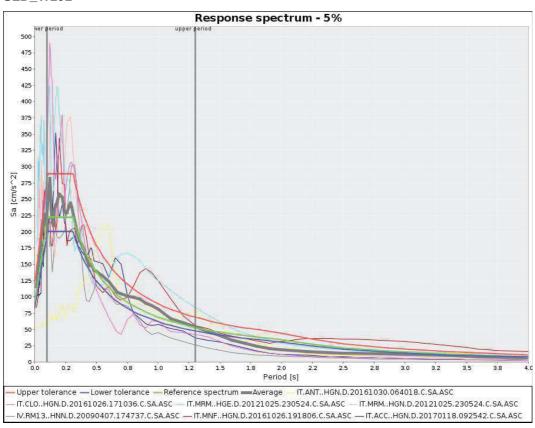

Si sono costruite tutte le possibili combinazione che si possono realizzare con i programmi di estrazione senza considerare la vita utile di 10 anni.

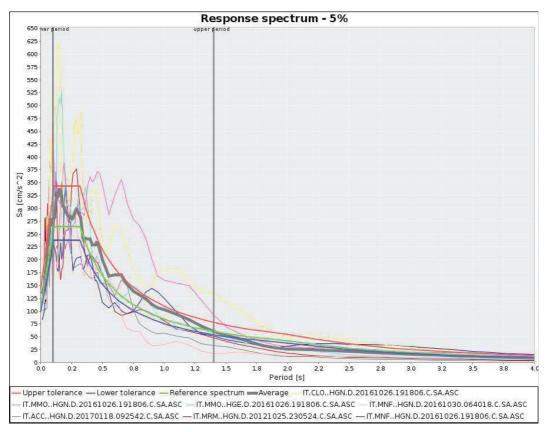
Da questi si sono ricavati gli spettri per ogni singola combinazione, così codificata:

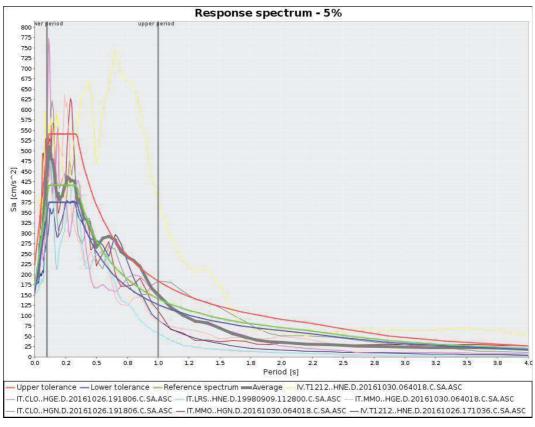

Stato limite, classe d'uso, vita utile (A=10 anni, B=50 anni e C=100 anni), tempo di ritorno.

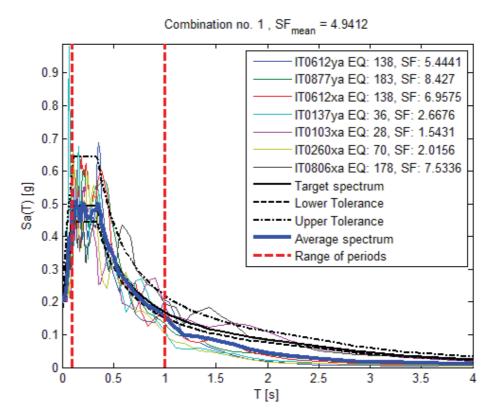
L'estrazione degli accelerogrammi di input è stata effettuata tramite i software REXELite – REXEL.

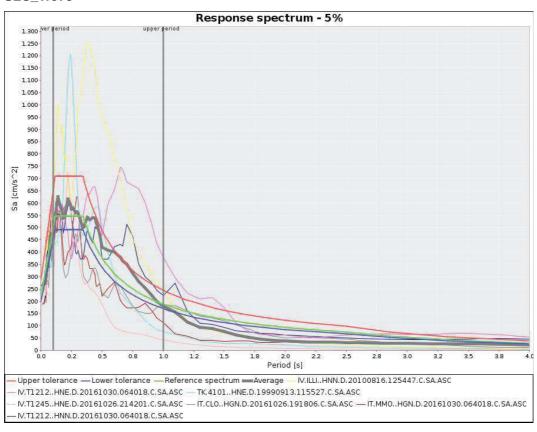

SLO_Tr30

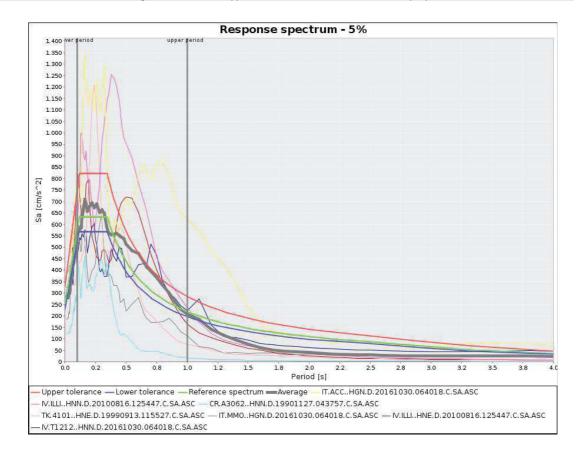

SLO_Tr45


SLD_Tr75


SLD_Tr101


SLD_Tr151


SLV_Tr475

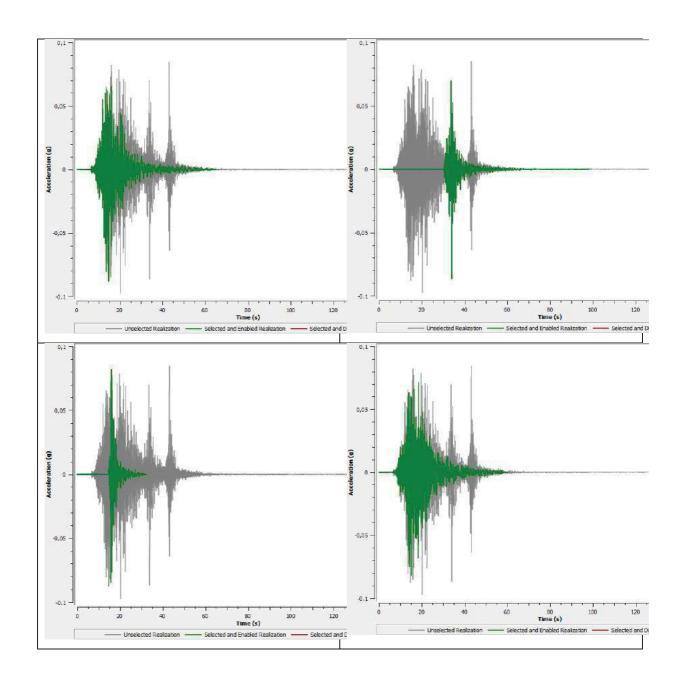

SLV_Tr712

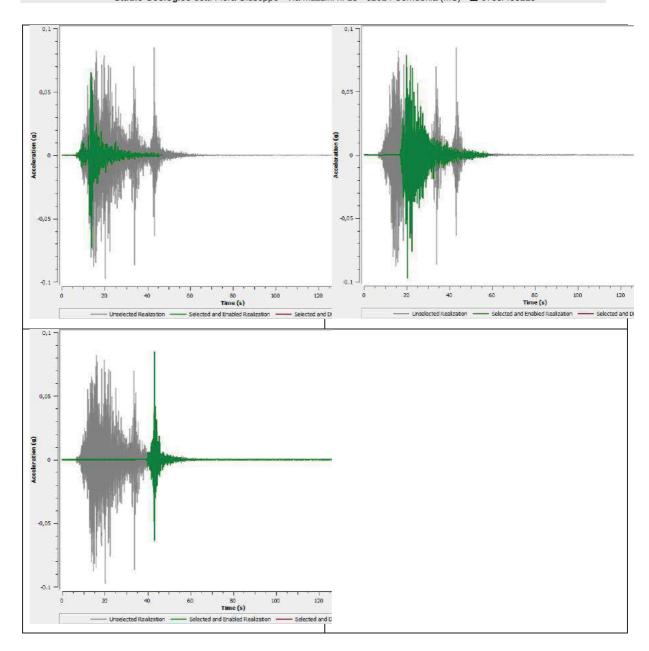
SLC_Tr975

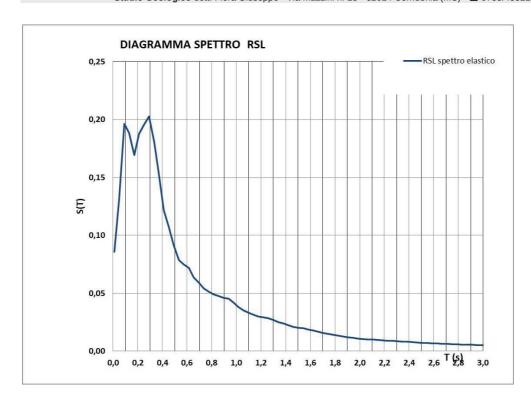
SLC_Tr1462

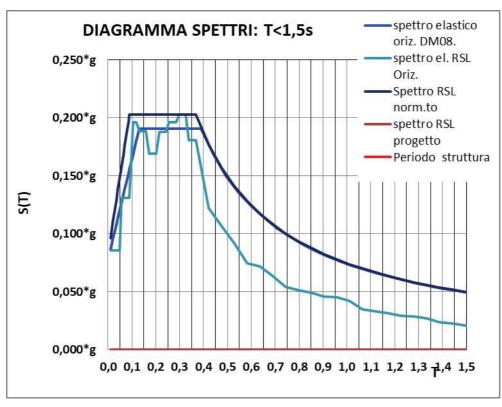
4.3.4 Analisi di risposta sismica locale SCUOLA M. MARTELLO

Definito l'input in termini di eventi sismici da sottoporre a simulazione, si sono determinate le caratteristiche sismostratigrafiche del volume di terreno d'indagine ed oggetto della probabile amplificazione.

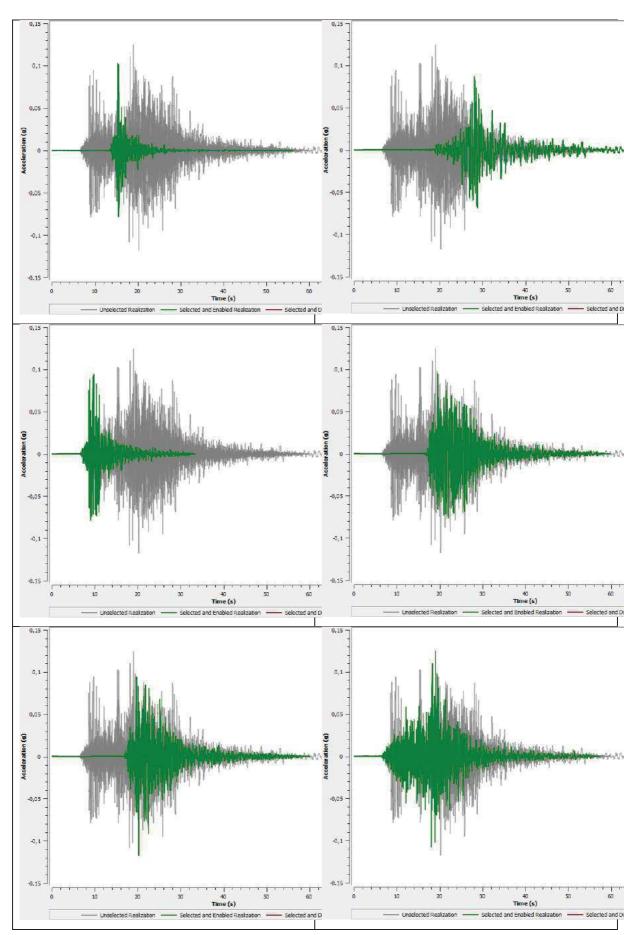

Profondità (m)	Spessori (m)	Tipo di terreno	Vs (m/s)
0.00	24	Colluvioni - limo sabbioso argilloso	396
24	5	Eluvium - Formazione alterata	396
29.0	3.0	Eluvium - Formazione alterata	491
32.0	6.0	Substrato arenaceo pelitico	621
38		Substrato – bedrock sismico	950

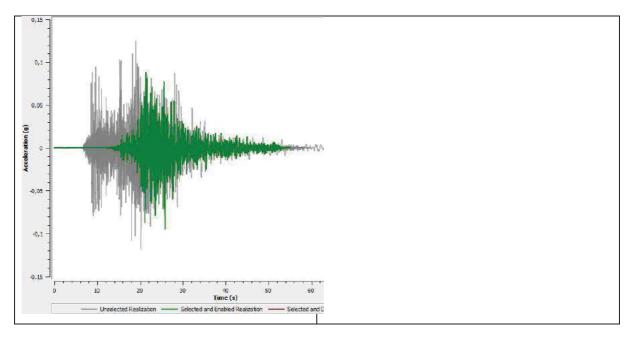

L'analisi di RSL è stata effettuata tramite il software STRATA, il quale, inseriti gli accelerogrammi di input e la stratigrafia sismica, fornisce gli spettri di risposta.

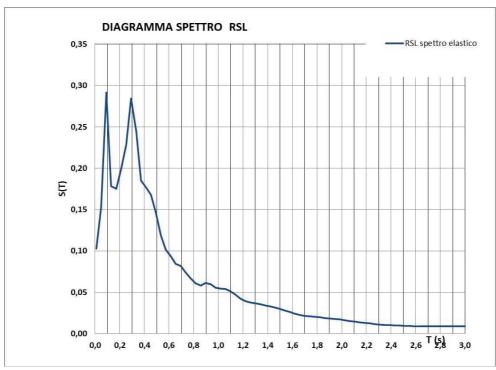

In conclusione vengono forniti:

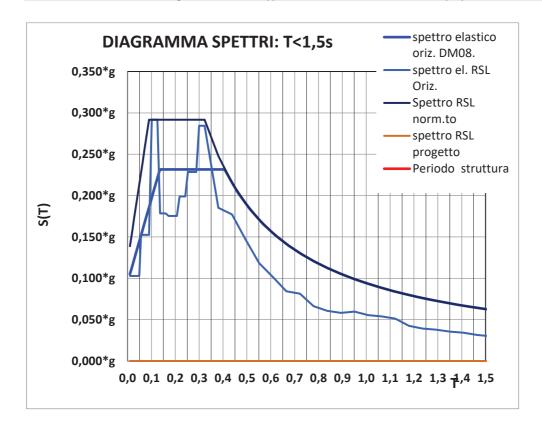

- Accelerogrammi di output;
- Spettri di risposta elastici e normalizzati.

SLO_Tr30:

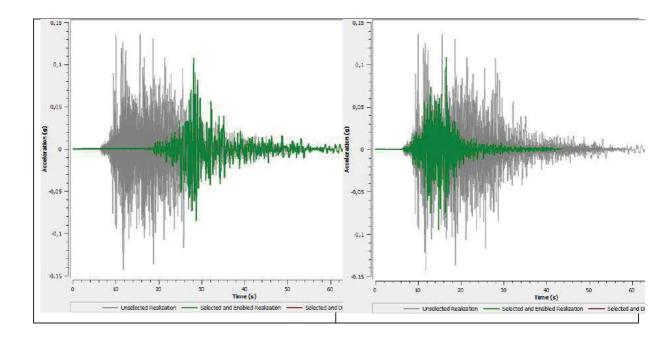


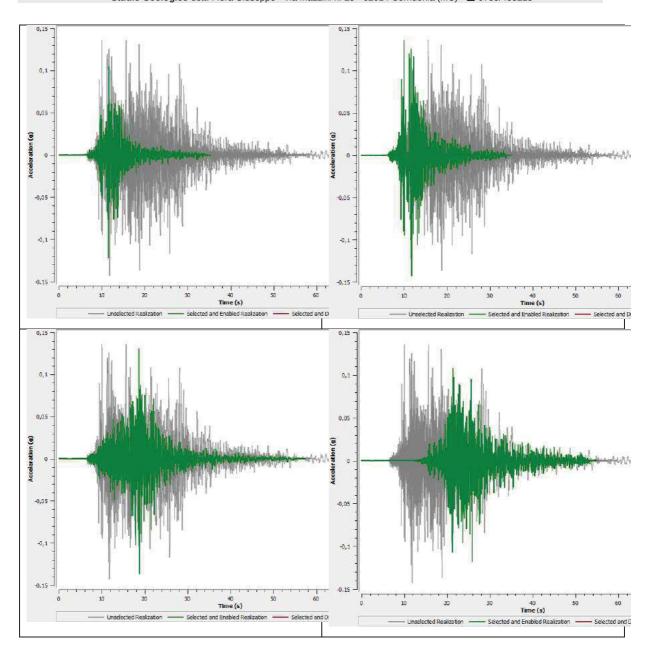


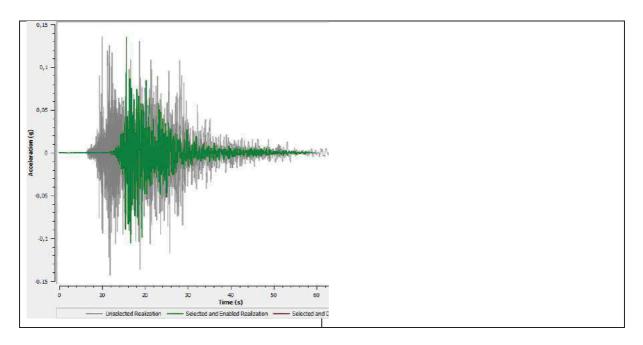


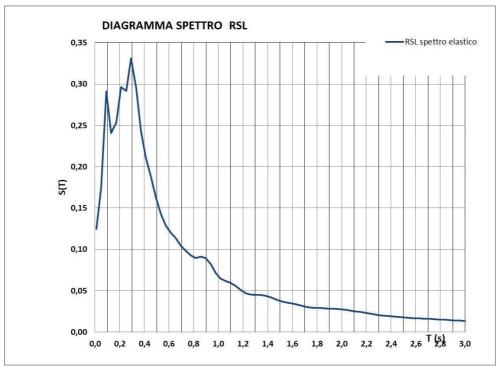


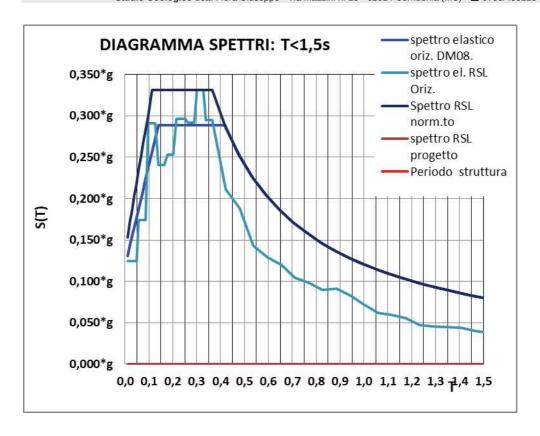
SLO_Tr45 (RSL):

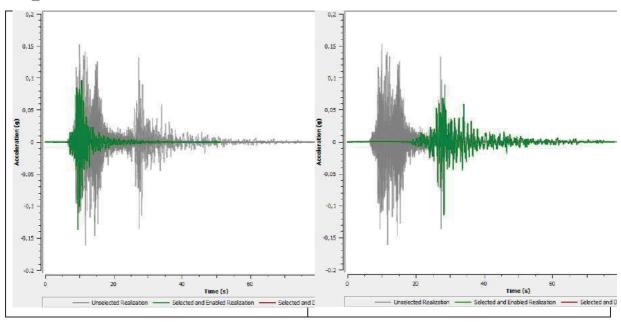


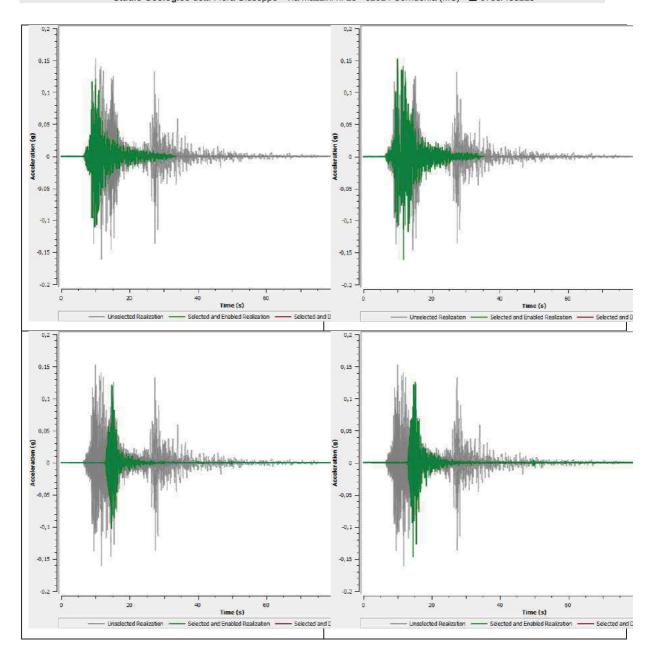


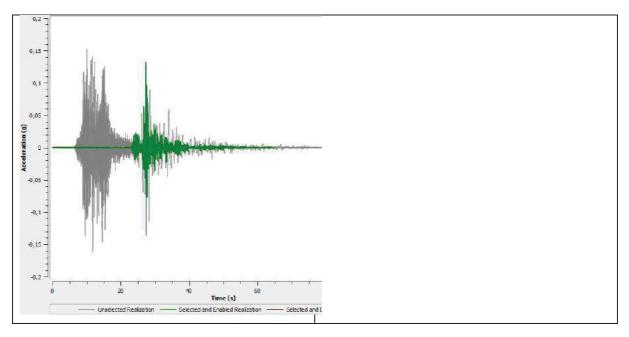


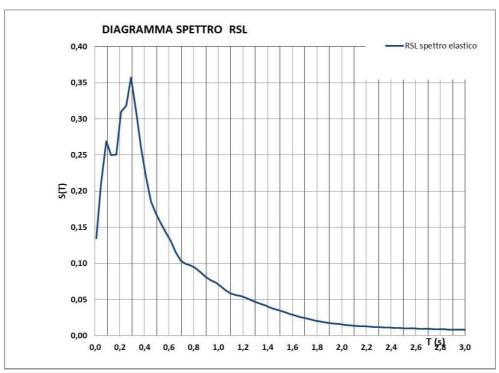


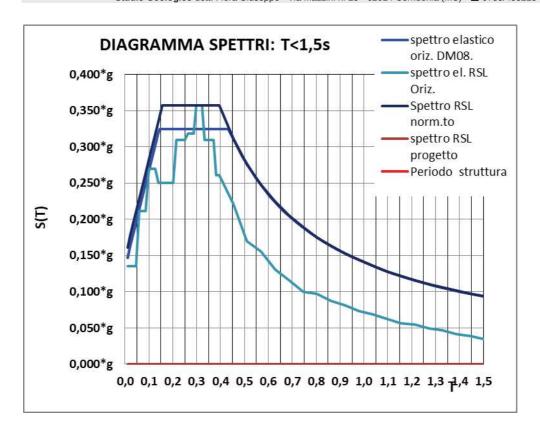

SLD_Tr75 (RSL):

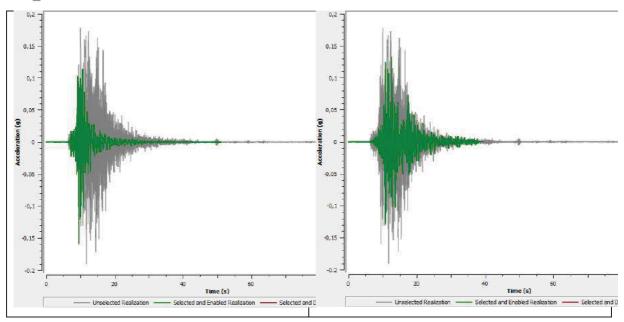


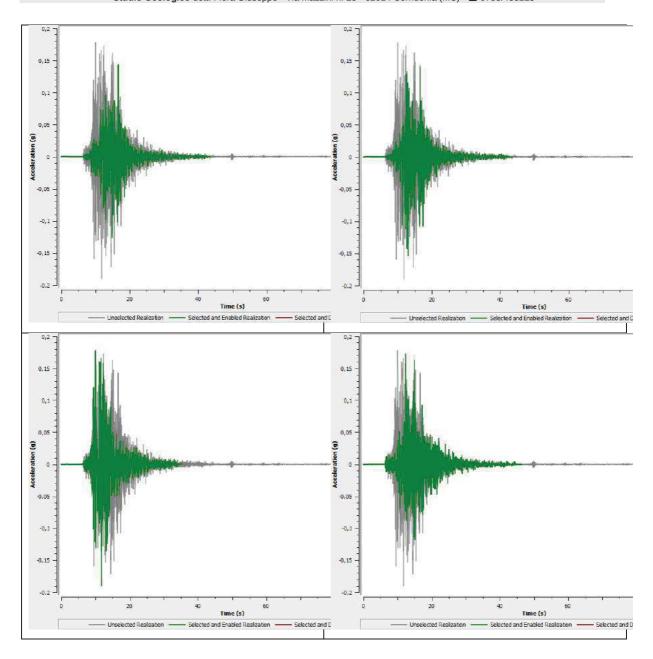


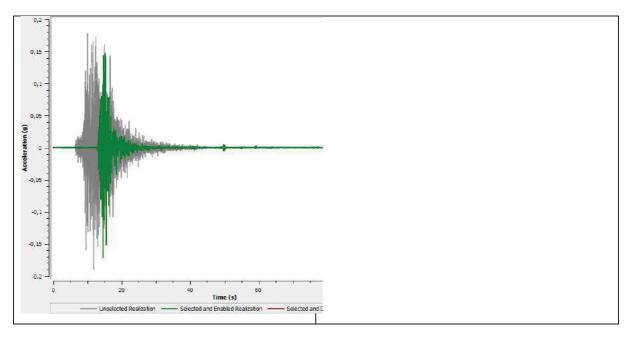


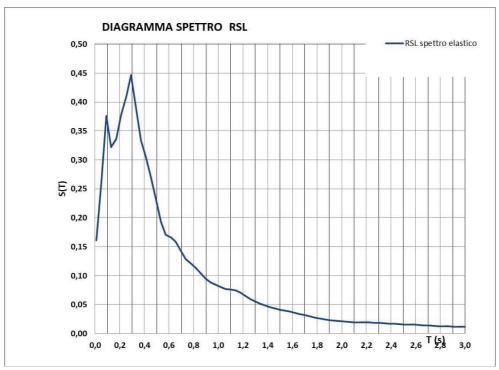


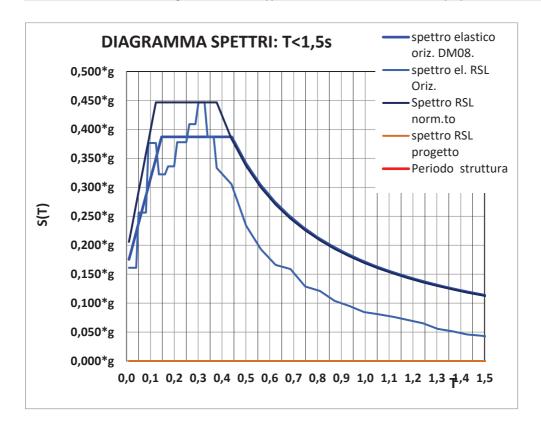

SLD_Tr101:

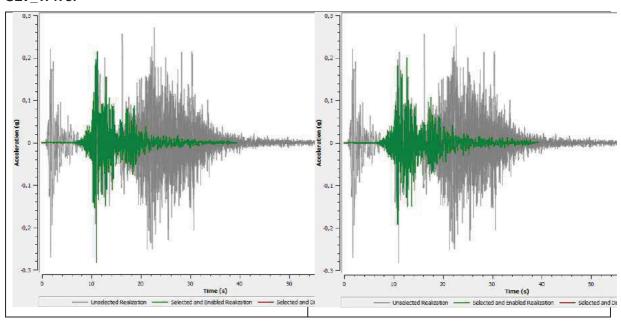


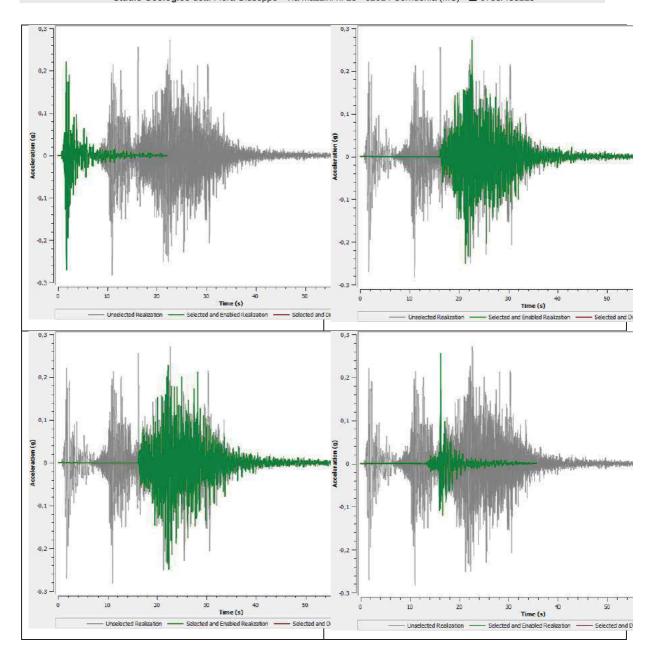


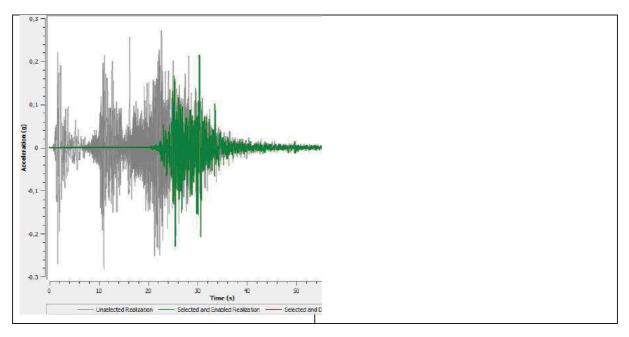


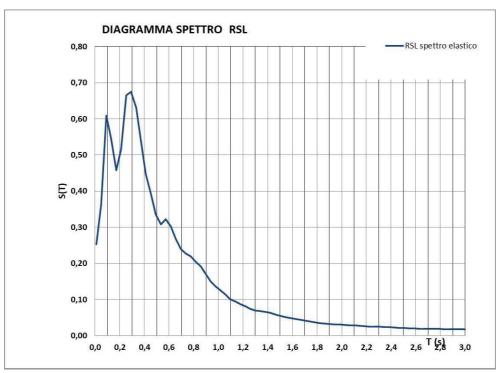


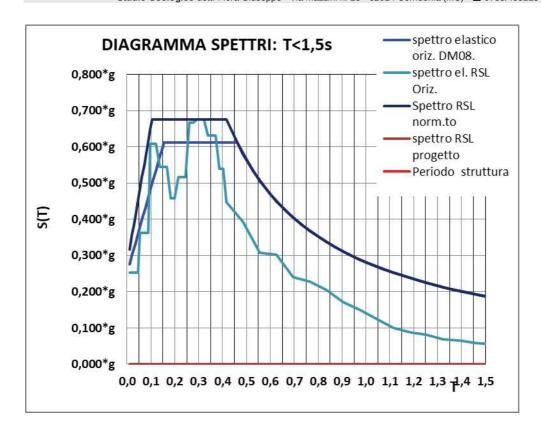

SLD_Tr151:

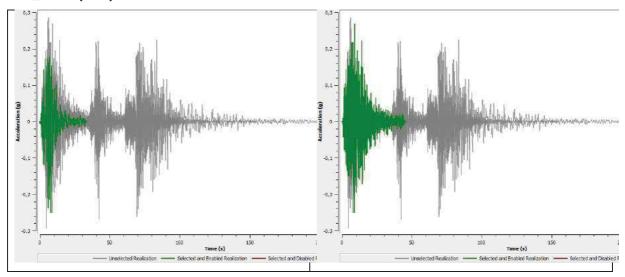


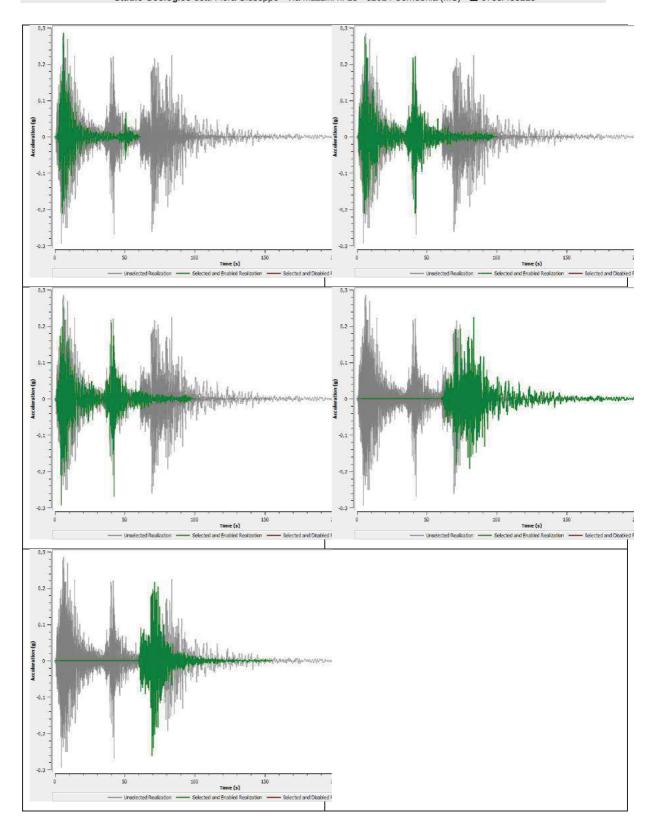


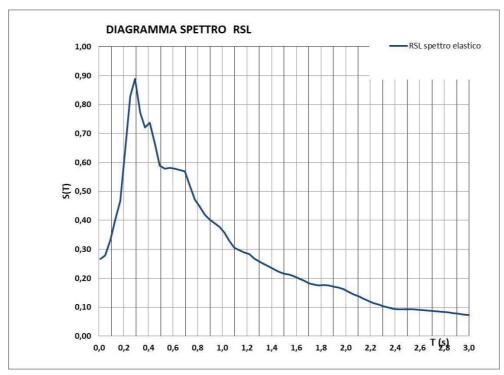


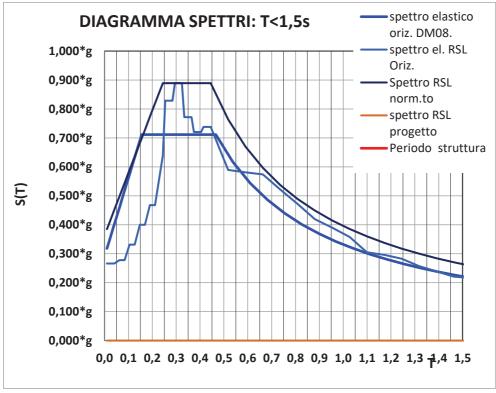



SLV_Tr475:

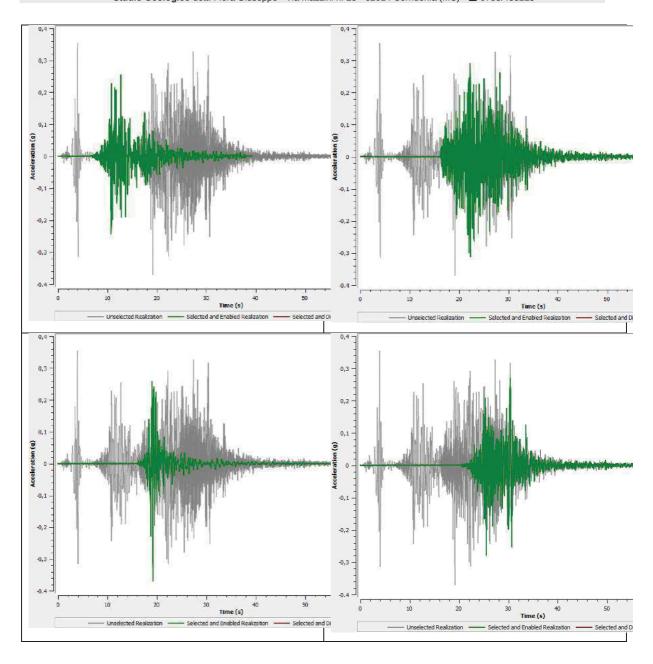


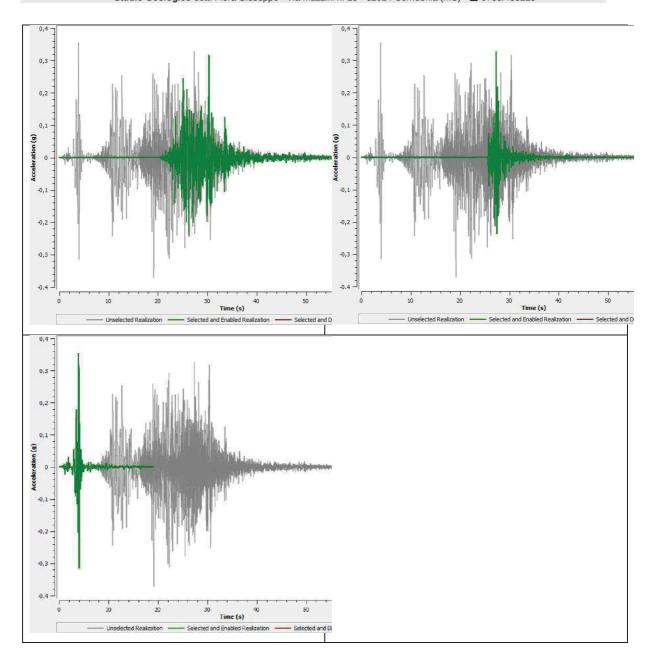


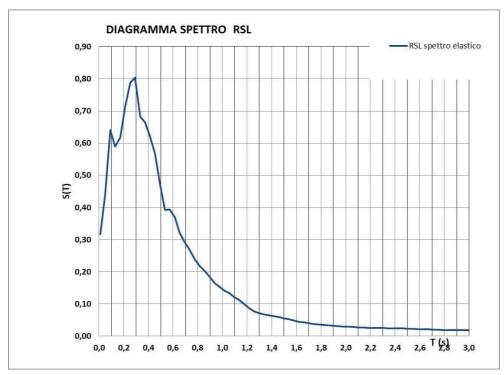


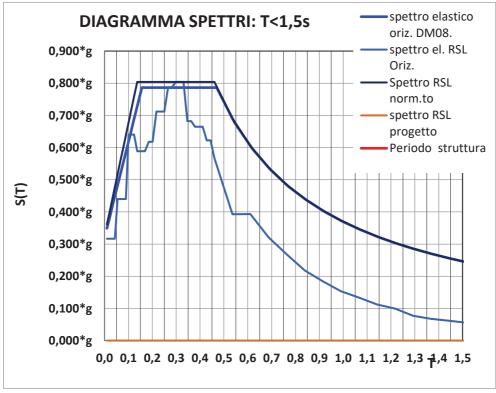


SLV_Tr712 (RSL):

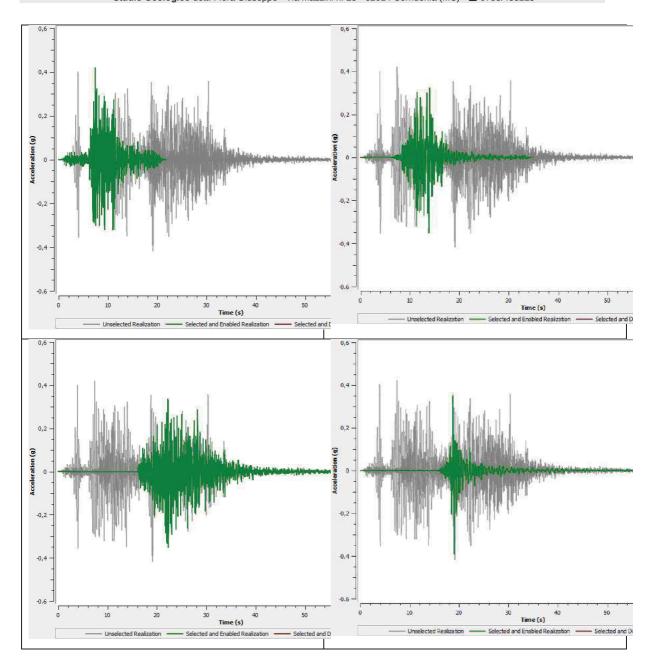


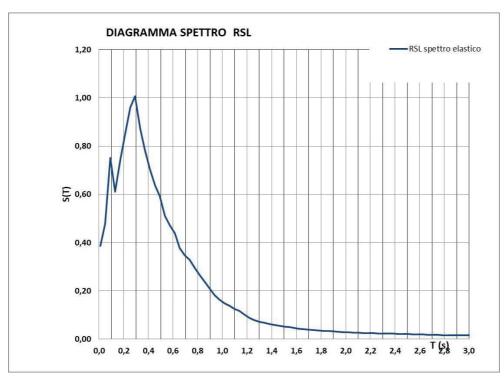


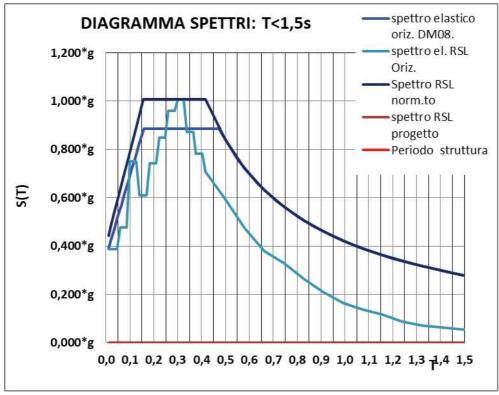




SLC_Tr975:







SLC_Tr1462 (RSL):

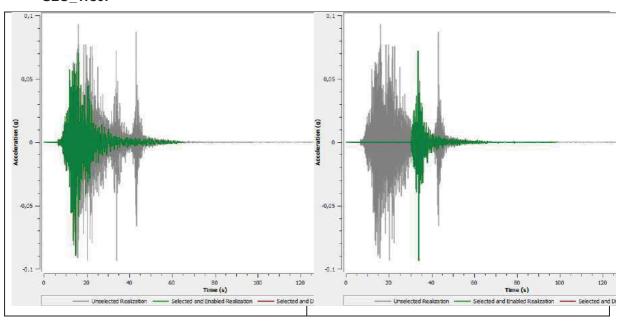
Valori dei parametri ag, F0, Tc* per i periodi di ritorno TR di riferimento:

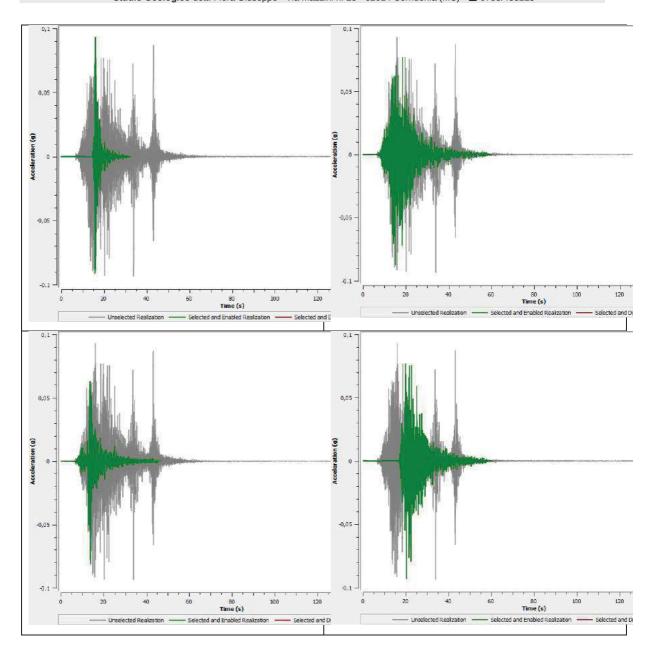
TR	a g	F ₀	Tc*
30	0,086	2,360	0,292
45	0,103	2,835	0,091
75	0,125	2,648	0,292

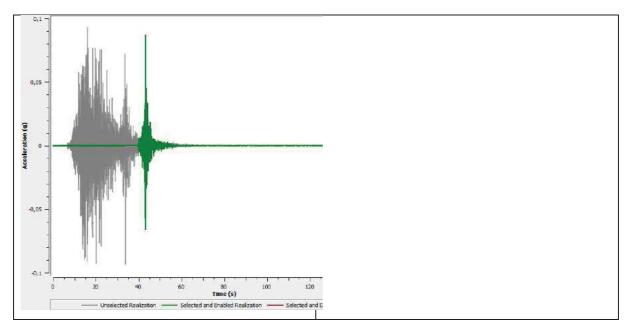
101	0,135	2,644	0,292
151	0,161	2,776	0,292
475	0,252	2,683	0,292
712	0,266	3,342	0,292
975	0,317	2,536	0,292
1462	0,386	2,609	0,292

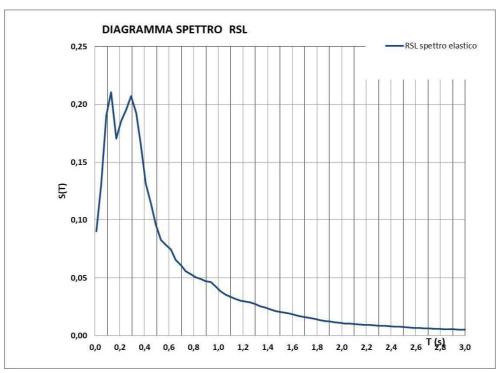
4.3.5 Analisi di risposta sismica locale SCUOLA G. GINOBILI

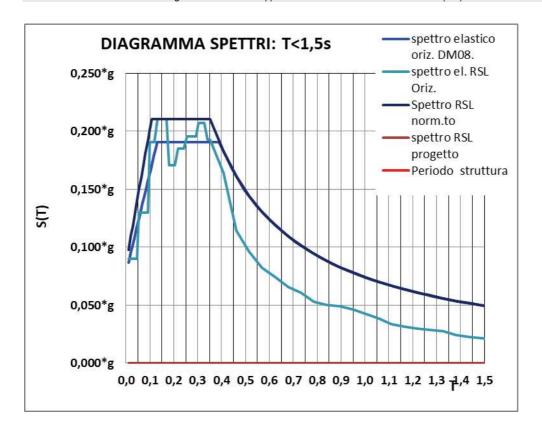
Definito l'input in termini di eventi sismici da sottoporre a simulazione, si sono determinate le caratteristiche sismostratigrafiche del volume di terreno d'indagine ed oggetto della probabile amplificazione.

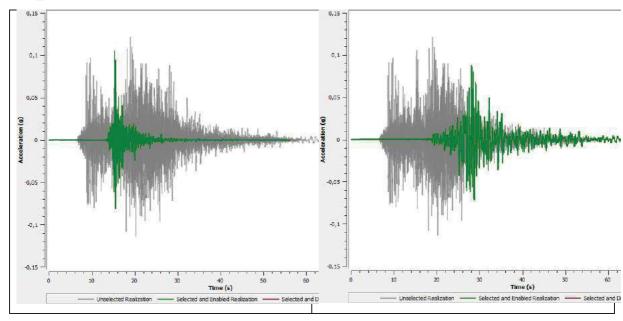

Profondità (m)	Spessori (m)	Tipo di terreno	Vs (m/s)
0.00	23.0	Colluvioni - limo sabbioso argilloso	360
23.0	9.0	Formazione alterata	410
32.0	6.0	Substrato arenaceo pelitico	621
38.0		Substrato – bedrock sismico	950

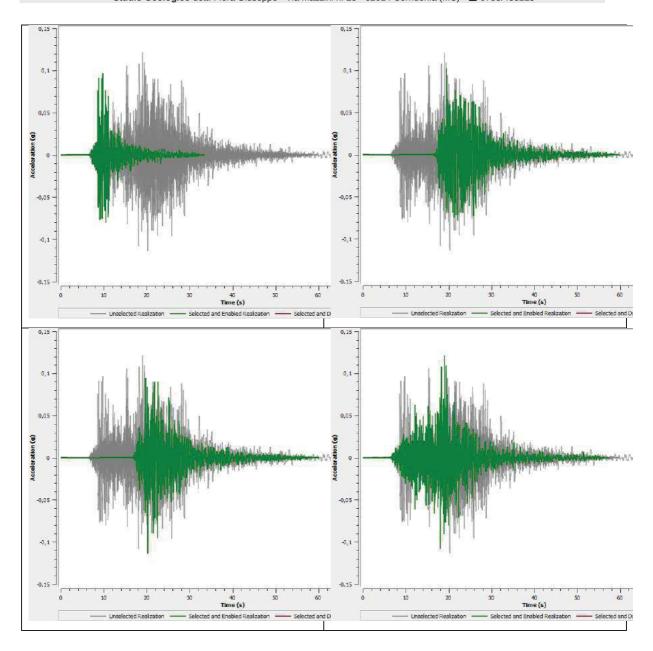

L'analisi di RSL è stata effettuata tramite il software STRATA, il quale, inseriti gli accelerogrammi di input e la stratigrafia sismica, fornisce gli spettri di risposta.

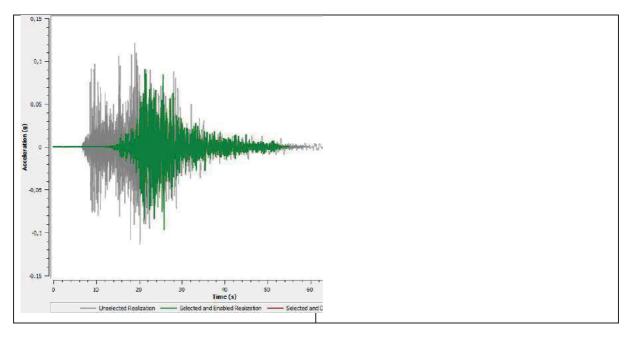

In conclusione vengono forniti:

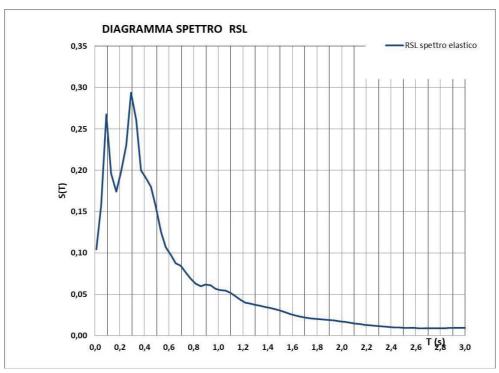

- Accelerogrammi di output;
- Spettri di risposta elastici e normalizzati.

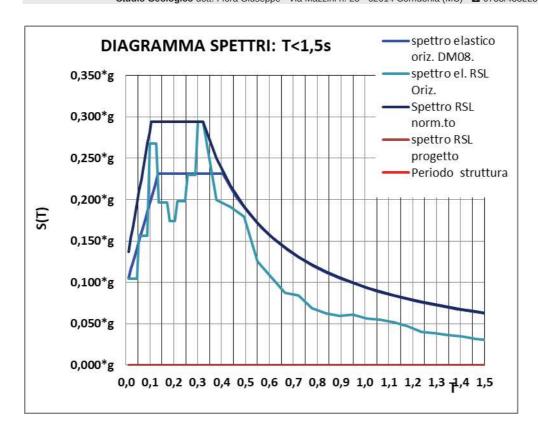

SLO_Tr30:

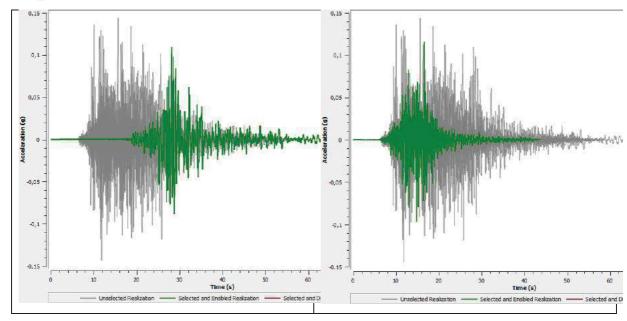


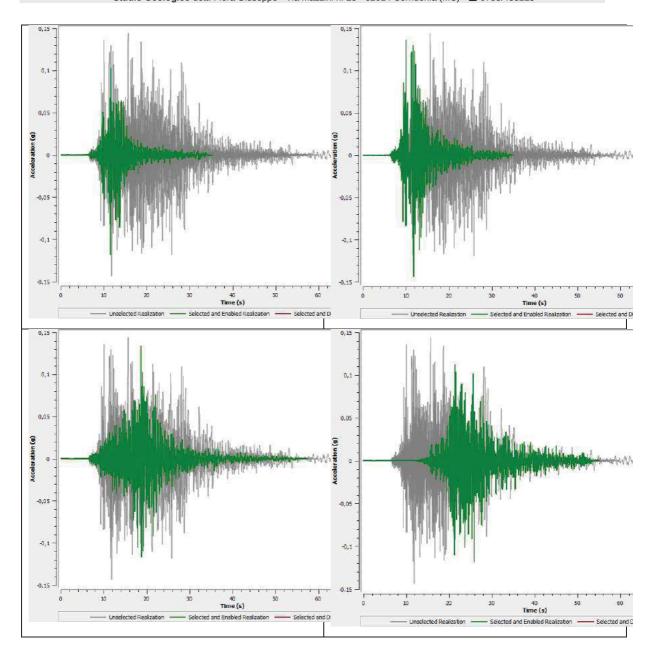


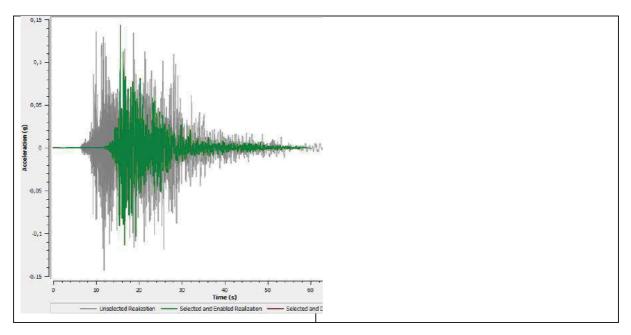


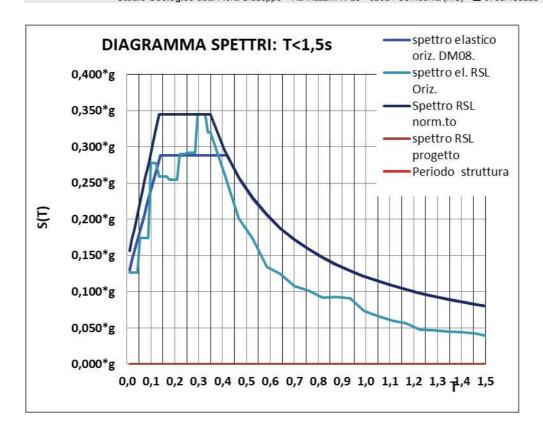


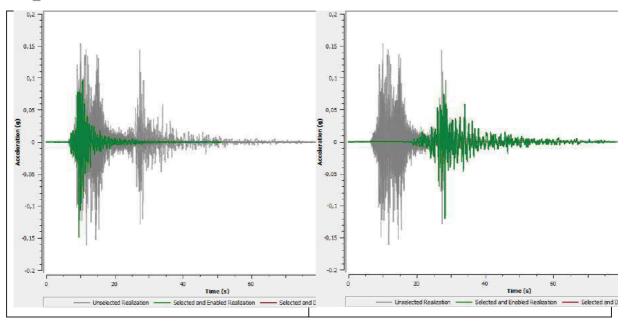

SLO_Tr45:

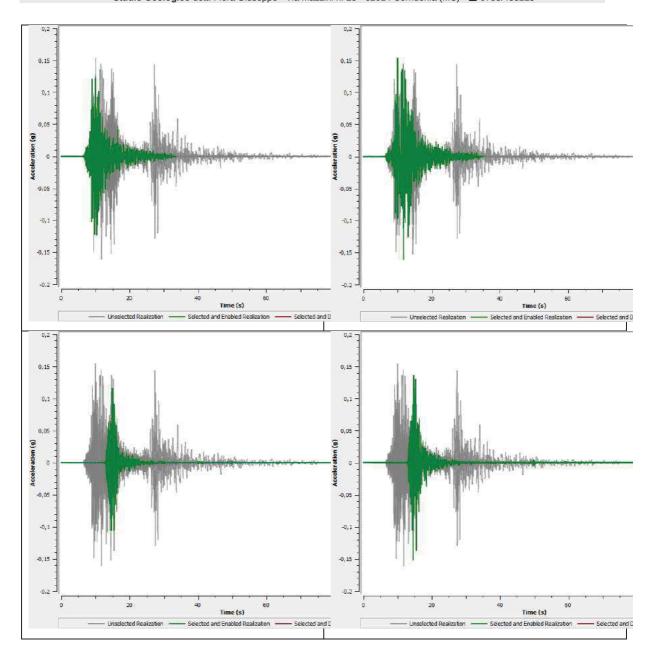


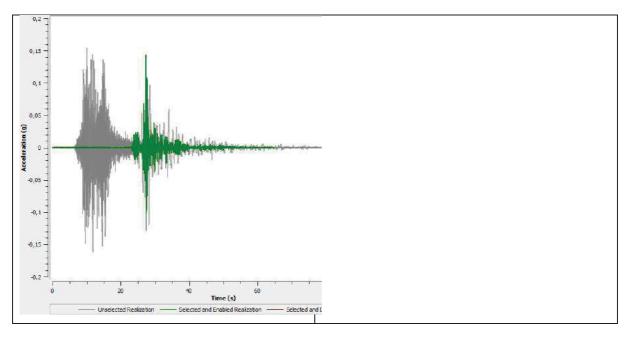


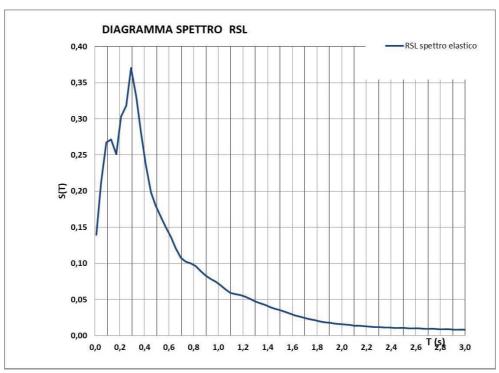


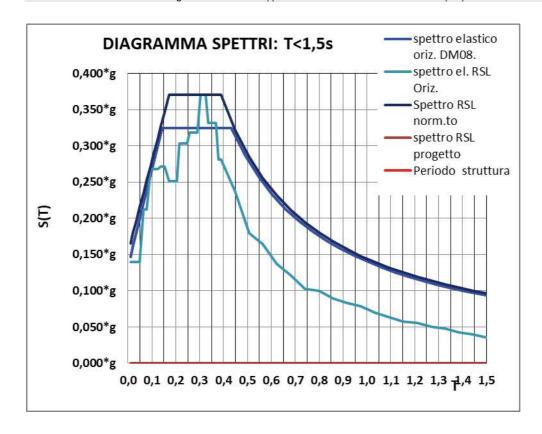

SLD_Tr75:

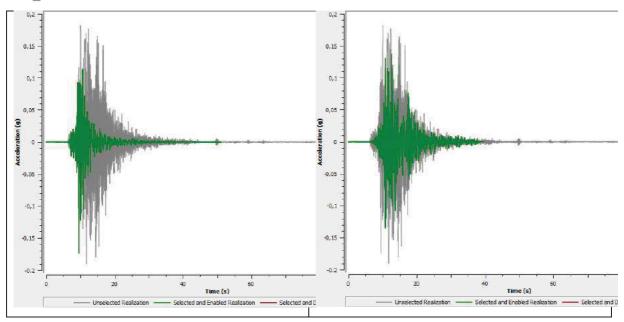


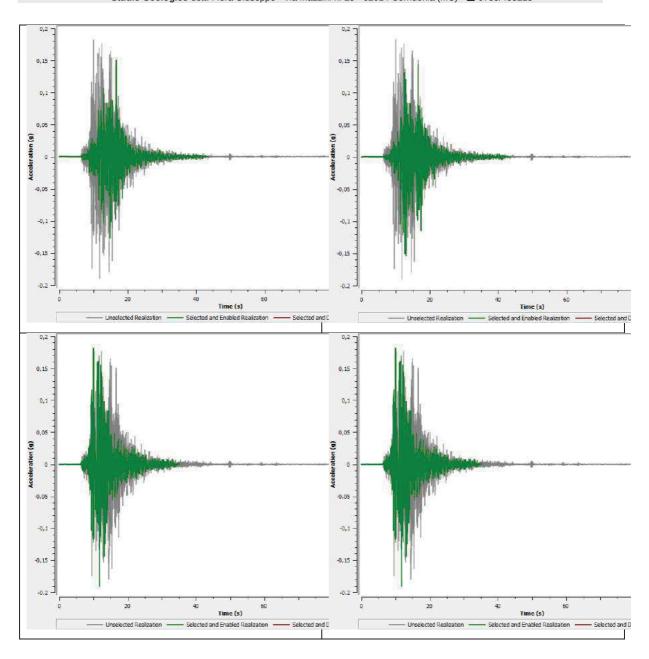


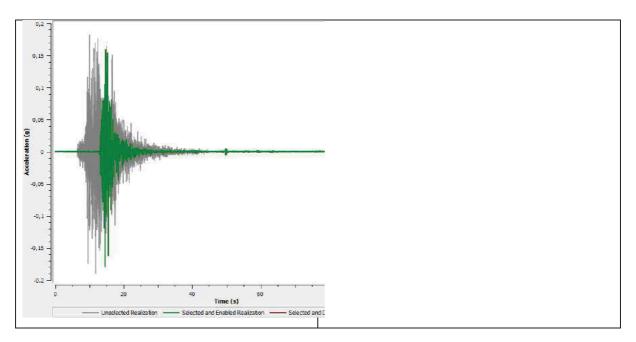


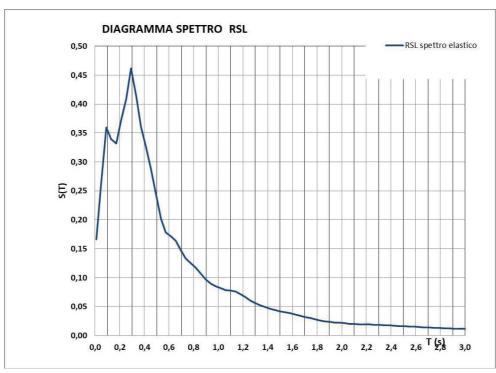


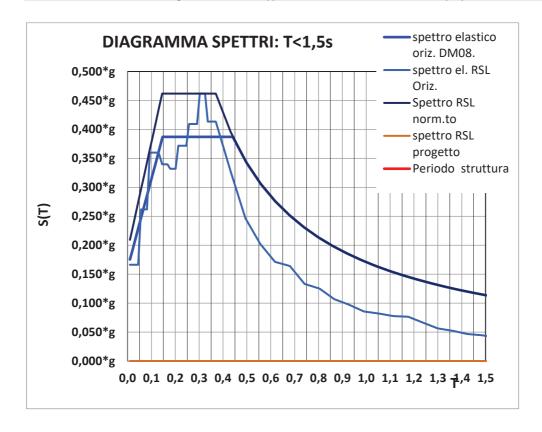

SLD_Tr101:

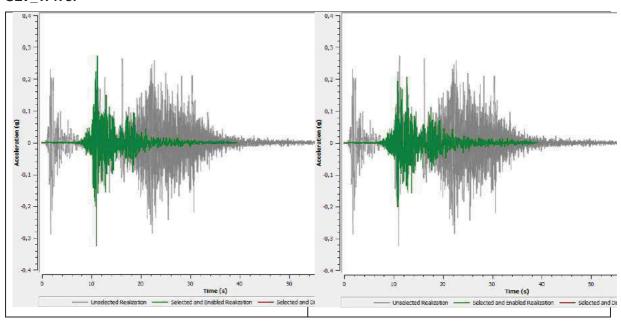


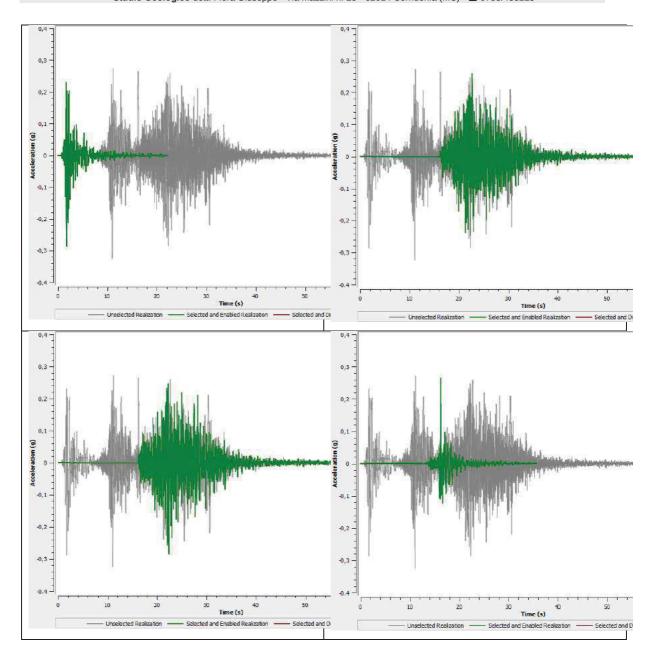


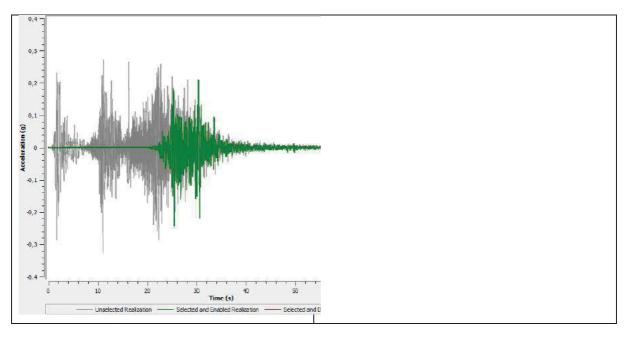


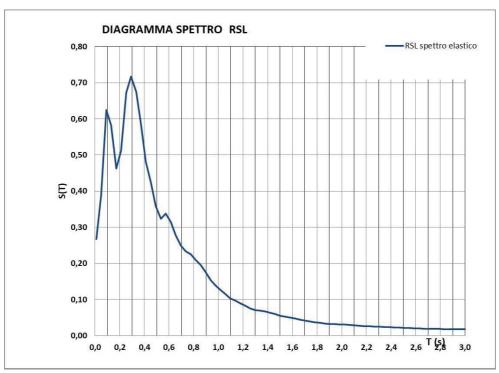


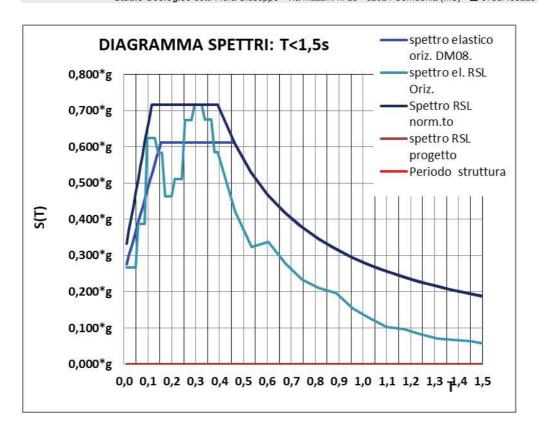

SLD_Tr151:

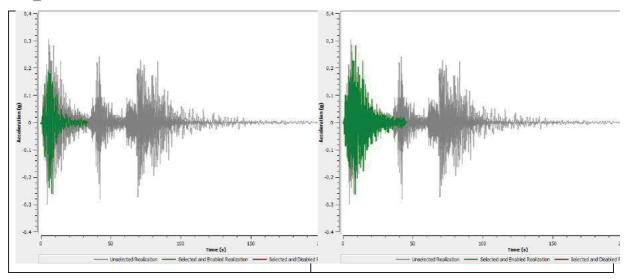


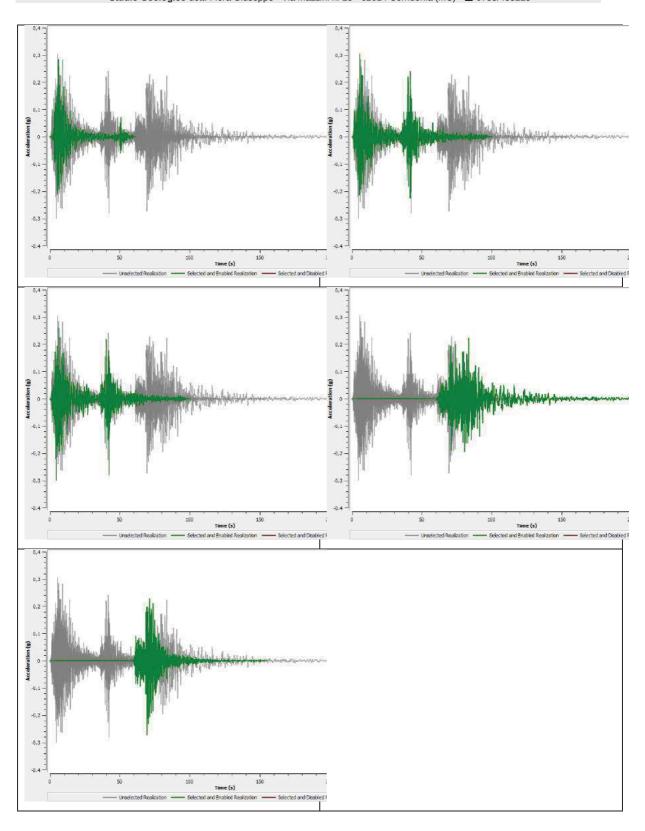


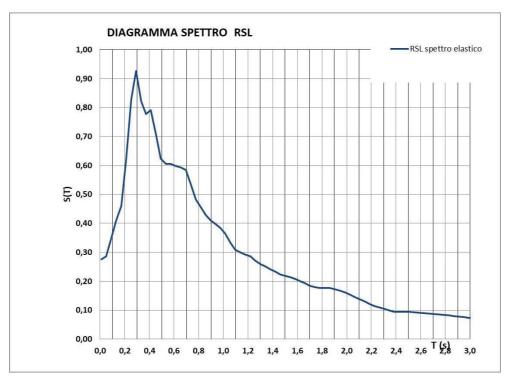


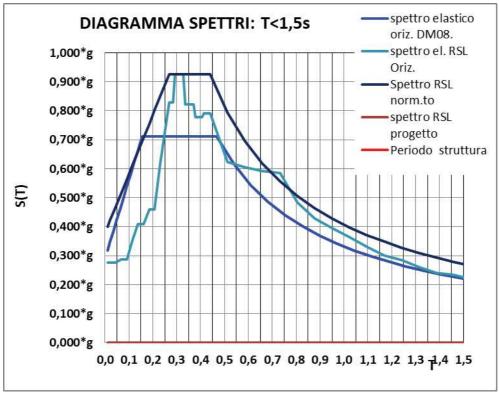



SLV_Tr475:

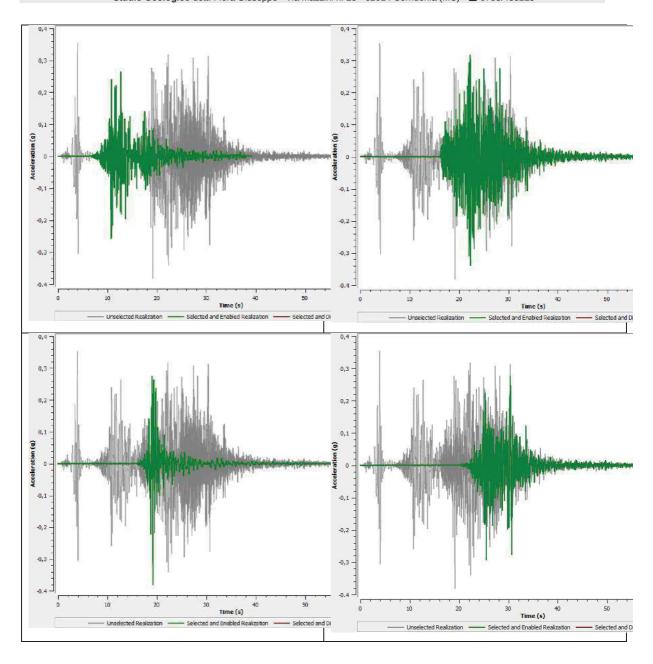


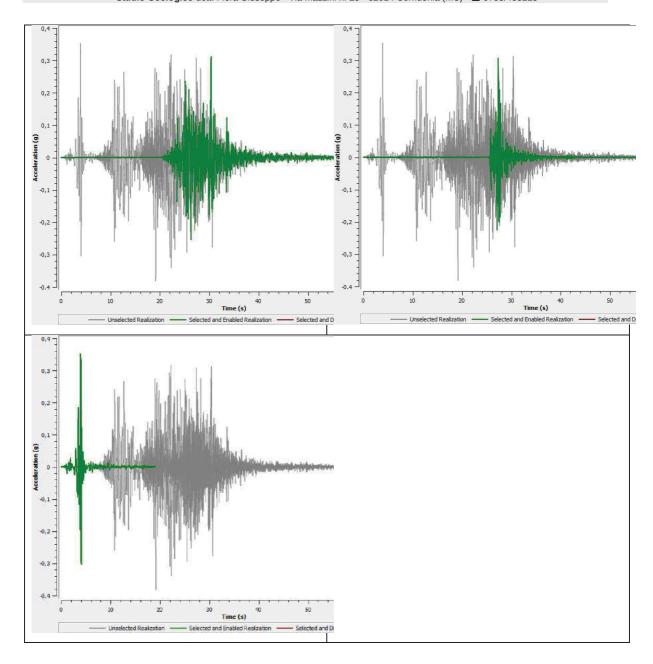


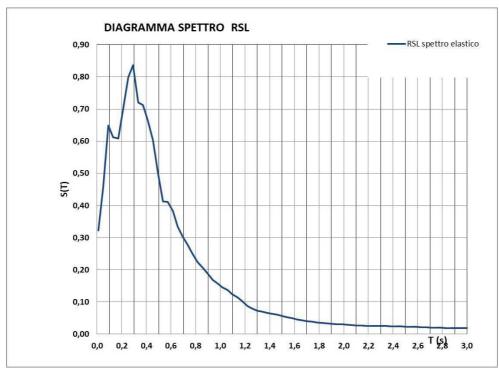


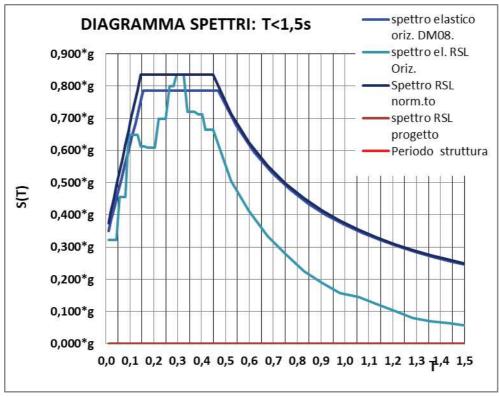


SLV_Tr712:

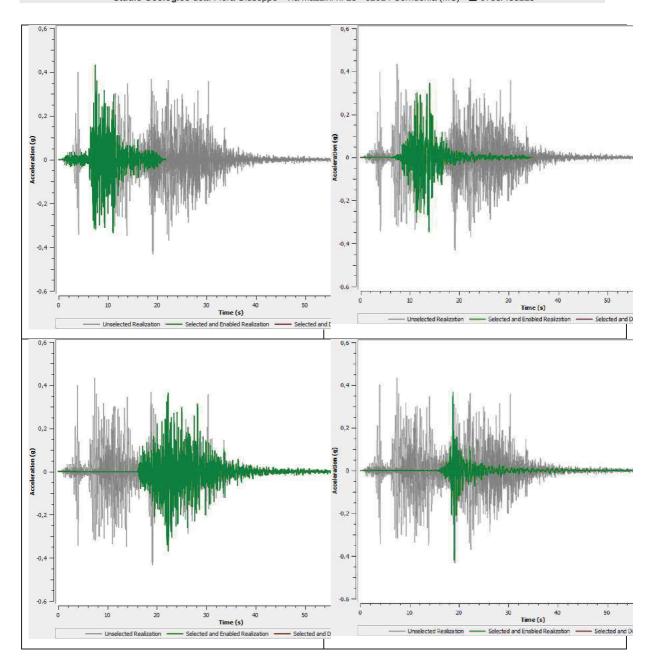


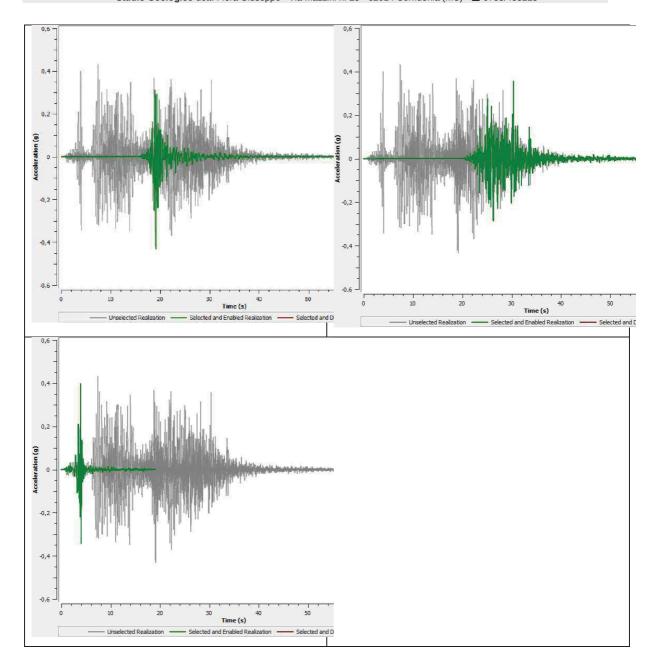


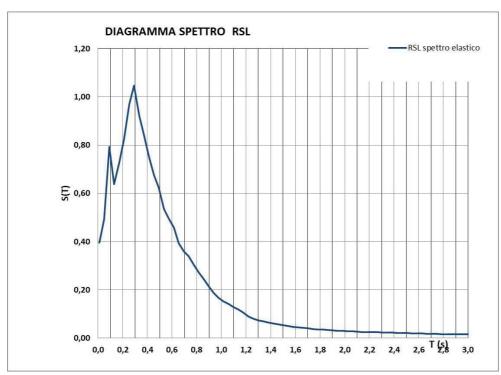


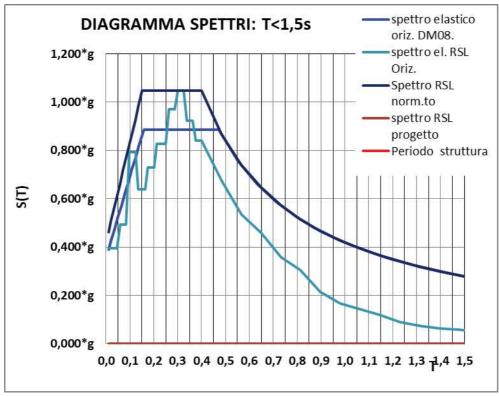


SLC_Tr975:





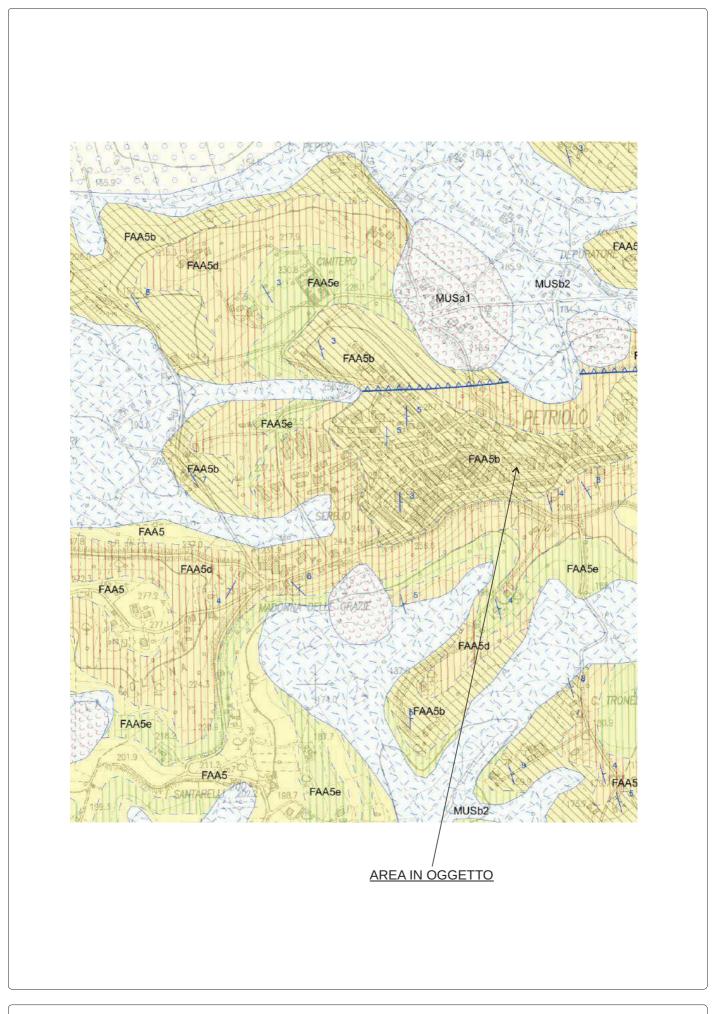




SLC_Tr1462:

Valori dei parametri ag, Fo, Tc* per i periodi di ritorno TR di riferimento:

TR	ag	F ₀	Tc*
30	0,090	2,344	0,131
45	0,104	2,827	0,292
75	0,127	2,709	0,292


Studio Geologico dott. Flora Giuseppe - Via Mazzini n. 25 - 62014 Corridonia (MC) - 2 0733/433223

101	0,140	2,650	0,292
151	0,166	2,783	0,292
475	0,268	2,675	0,292
712	0,275	3,367	0,292
975	0,322	2,596	0,292
1462	0,395	2,651	0,292

Corridonia, Giugno 2018

Il Geologo Dott. Flora Giuseppe

LEGENDA GEOLOGICA

DEPOSITI CONTINENTALI QUATERNARI **VERSANTE MARCHIGIANO**

SINTEMA DEL MUSONE

(OLOCENE)

MUSa1 Frane in evoluzione

MUSb2 Depositi eluvio-colluviali

Depositi alluvionali attuali MUSb (ghiaia, sabbia, limo)

Depositi alluvionali terrazzati MUSbn (ghiaia, sabbia, limo)

SINTEMA DI MATELICA

(PLEISTOCENE SUPERIORE)

MTIbn

Depositi alluvionali terrazzati (ghiaia, sabbia, limo)

SUPERSINTEMA DI COLLE ULIVO-COLONIA MONTANI

(PLEISTOCENE MEDIO SOMMITALE)

ACbn

Depositi alluvionali terrazzati (ghiaia, sabbia, limo)

SINTEMA DI URBISAGLIA

(PLEISTOCENE INFERIORE MEDIO - MEDIO)

URSbn

Depositi alluvionali terrazzati (ghiaia, sabbia, limo)

SUCCESSIONE UMBRO-MARCHIGIANO-ROMAGNOLA SUCCESSIONE PLIOCENICA

FAA

FORMAZIONE DELLE ARGILE AZZURE Zancleano p.p - Santemiano

FAAe

FORMAZIONE DELLE ARGILE AZZURE Litofacies pelitico-arenacea

Zancleano p.p - Santerniano

FAA5

FORMAZIONE DELLE ARGILE AZZURE

Membro di Offida

Zancleano p.p - Santerniano

FAA5b

FORMAZIONE DELLE ARGILE AZZURE

Membro di Offida

Litofacies arenaceo-conglomeratica Zancleano p.p - Santerniano

FAA5c

FORMAZIONE DELLE ARGILE AZZURE

Membro di Offida Litofacies arenacea

Zancleano p.p - Santerniano

FAA5d

FORMAZIONE DELLE ARGILE AZZURE

Membro di Offida

Litofacies arenaceo-pelitica Zancleano p.p - Santerniano

FAA5e

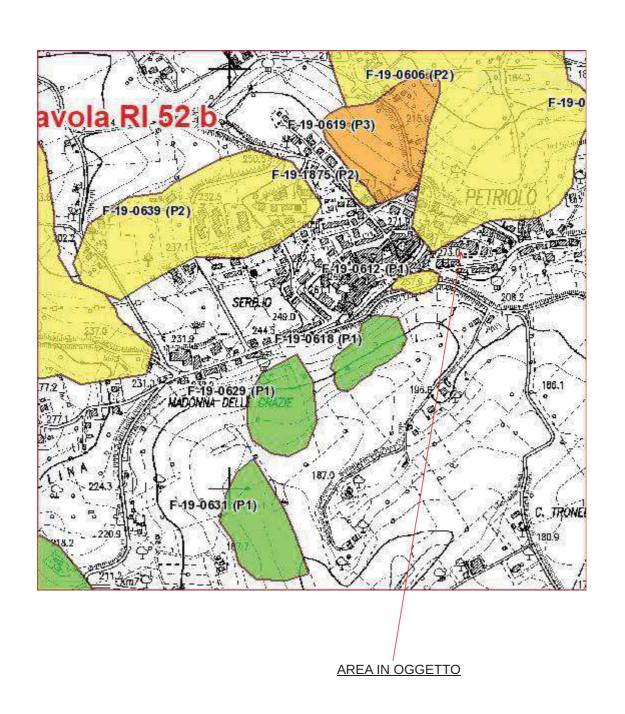
FORMAZIONE DELLE ARGILE AZZURE

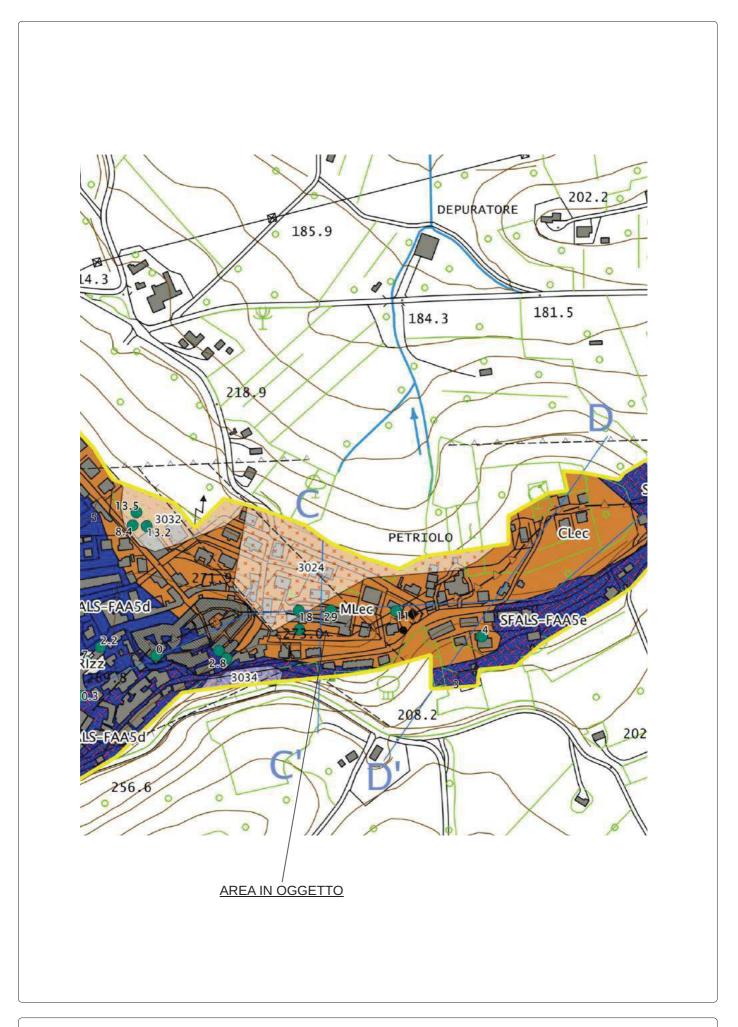
Membro di Offida

Litofacies pelitico-arenacea Zancleano p.p - Santemiano

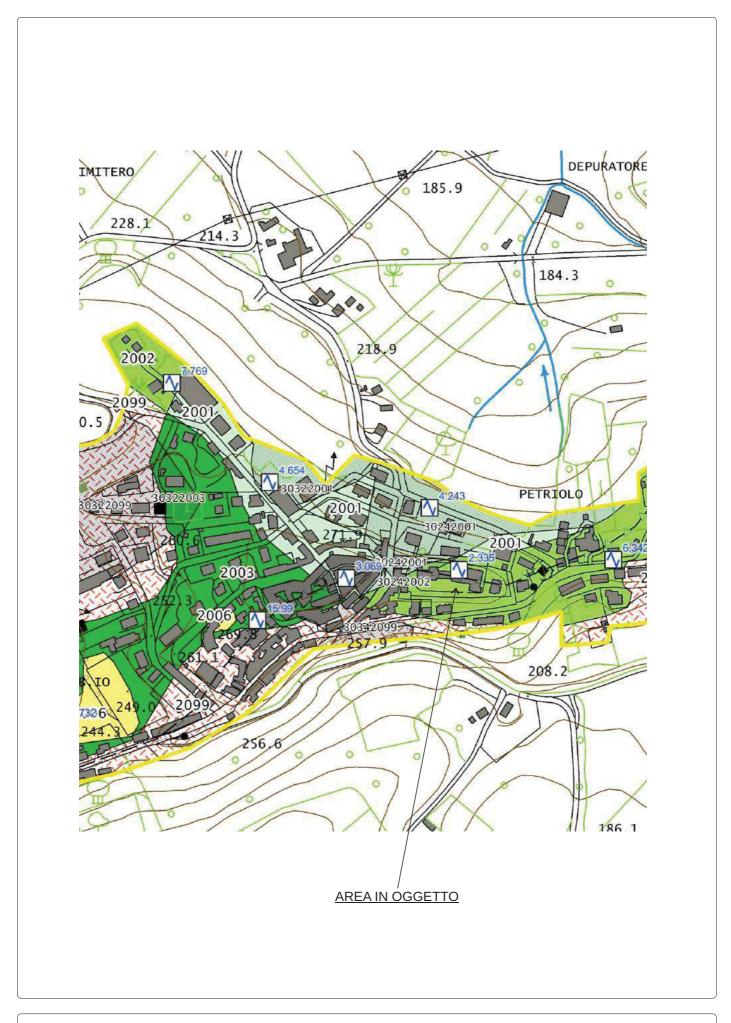
Contatto stratigrafico e/o litologico

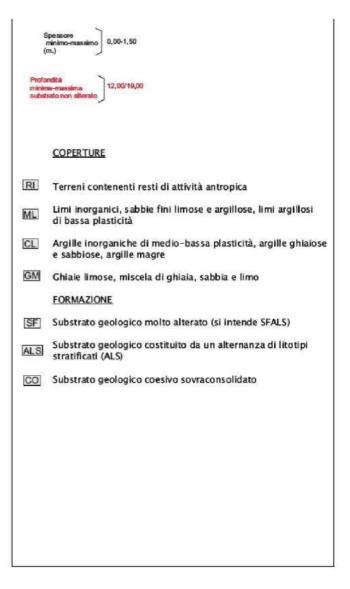
Contatto stratigrafico inconforme

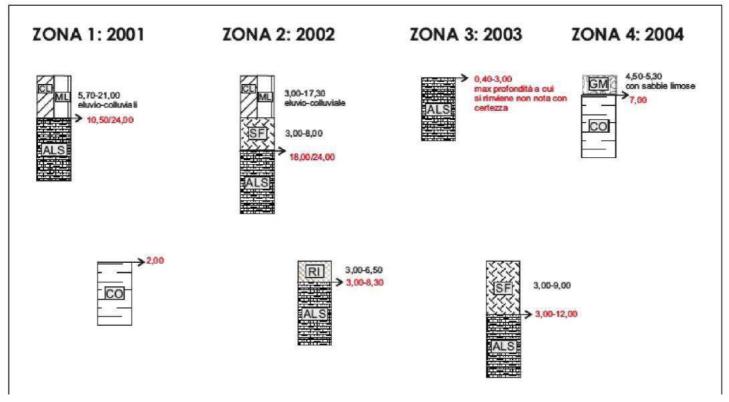

Faglia

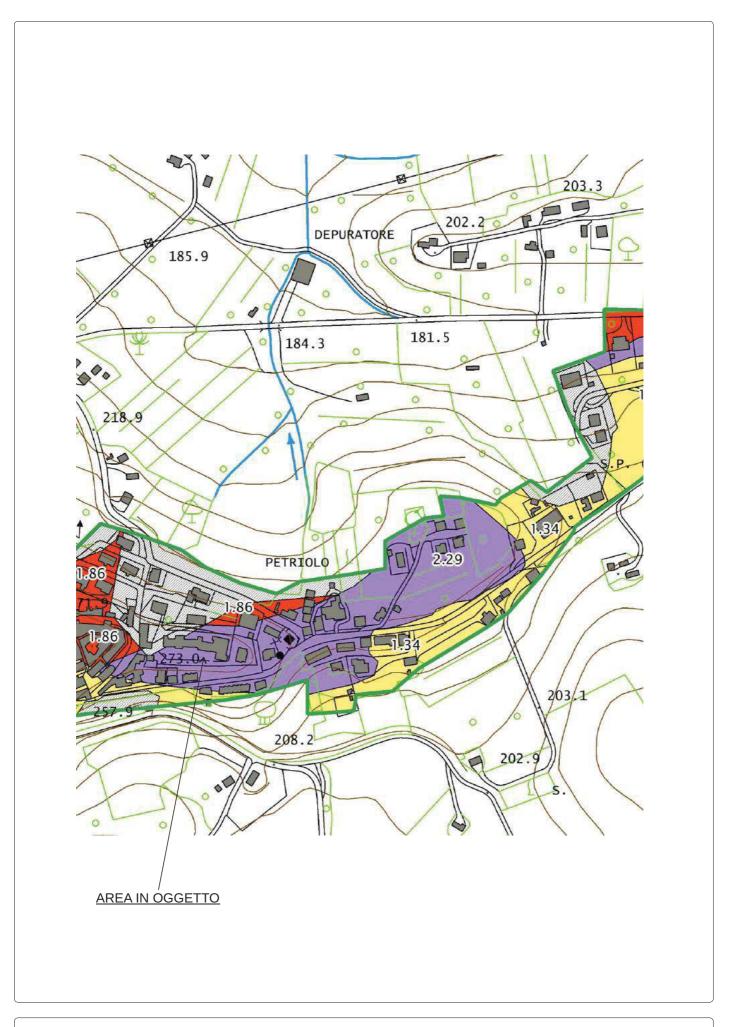

Faglia inversa

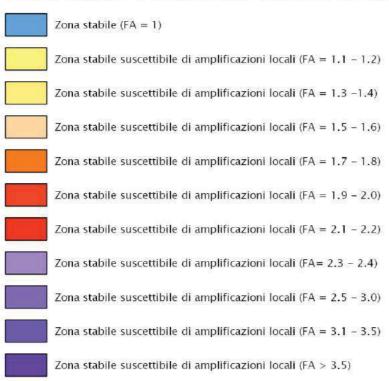
Stratificazione diritta

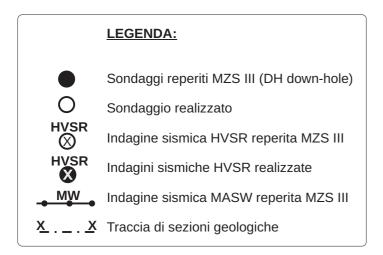


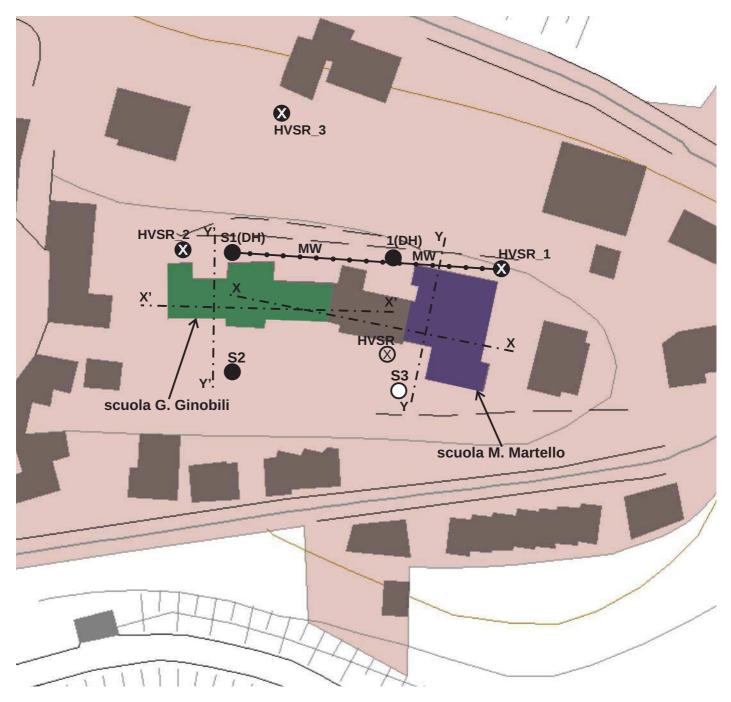



Geoidr Giacitura strati Pozzo o sondaggio che ha raggiunto il substrato geologico (m) Pozzo o sondaggio che ha non raggiunto il substrato geologico (m) Profindità (m) delle falda in aree con sabbie e/o ghiaie Traccia sezione geologica Traccia della sezione geologica Forme di superficie e sepolte Elineari Orlo di scarpata morfologica naturale o artificiale (10-20 m) Forme Area con cavità sepolta Elementi tettonico strutturali Elineari Instabilità di versante FR_Q - complessa FR_Q - non definito FR_I - scorrimento FR_I - complessa Terreni di copertura GM-tf GM - Ghiaie limose, miscela di ghiaia, sabbia e limo, di terrazzo fluviale L-ec CL – Argille inorganiche di medio-bassa plasticità, argille ghiaiose o sabbiose, argille limose, argille magre, eluvio-colluviali ML – Limi inorganici, farina di roccia, sabbie fini limose o argillose, limi argillosi di bassa plasticità, eluvio colluviali RI - Terreni contenenti resti di attività antropica Substrato Geologico CO - Coesivo sovraconsolidato ALS - Alternanza di litotipi, stratificato SFALS - Alternanza di litotipi, stratificato, fartturato/alterato


Elementi geologici ed idrogeologici


Legenda


Zone di attenzione per instabilità


ZA fr – Zona di attenzione per instabilità di versante

Microzonazione sismica di livello 3

Zone stabili e stabili suscettibili di amplificazioni locali

Via Mazzini n. 25 - 62014 Corridonia Tel. 0733/433223 cell. 338/6562763

SONDAGGIO S3

Allegato n° 7

Metodo di perforazione: ROTAZIONE

Scala 1:	100		Località: Scuola secondaria Marco Martello, via Leopardi 1, Petriolo (MC)	Dat	a: 16/05/2018
Churchi una Ga	qu	ote		Daalaat	6idii
Stratigrafia	p.c.	parz.	Litologia	Pocket	Considerazioni
m 1 2 3	0.0		Limo sabbioso argilloso plastico color nocciola	2 2	
	3.0 4.0		Limo argilloso marrone scuro molto plastico	3,5	
5	4.0		Limo sabbioso argilloso plastico color nocciola	3,5	
6		12.0		4	
7				4	
8				4	
9				4	
10				4	
11				4	
12	12.0			4,5	
13			Argilla limosa sabbiosa grigia aumenta la consistenza	> 5	
14				> 5	
15				4,5	
16		12.0		4,5	
17				4,5	
18				4,5	

Via Mazzini n. 25 - 62014 Corridonia Tel. 0733/433223 cell. 338/6562763

SONDAGGIO S3

Allegato n° 7

Metodo di perforazione: ROTAZIONE

	Scala 1:	100		Località: Scuola secondaria Marco Marte via Leopardi 1, Petriolo (MC)		ta: 16/05/2018
St	ratigrafia	que	ote	Litologia	Pocket	Considerazioni
		p.c.	parz.	Litologia	FOCKET	Considerazioni
m					4,5	
20					5	
21					4,5	
22			13.0		4,5	
23					3,5	
24					5	
25		25.0				Presenza di acqua
26				Alternanze di sabbie ed argille con debole stratificazione		da 25,0 m
27				(FORMAZIONE ARENACEO PELITICA)	
28						
29						
30						
31			12.0			
32						
33						
34						
35						
36						
37		37.0				Fine sondaggio a 37,0 m di profondità

SONDAGGIO S3

SONDAGGIO S3: da 0.0 mt a 37.0 mt

Via Don G. Minzoni 103 - 62028 Sarnano MC Tel. + Fax: 0733 - 657159 Port.le 330-882116

E_mail: lucarelli.geologo@virgilio.it E_mail: lucarelli.geologo@pec.it

Geologo:

Collaboratore:

Geol. COSTANTINO LUCARELLI

Ordine dei Geologi della Regione Marche Geologo Specialista n°357 - Albo Sezione A

C.F.: LCRCTN65E22I436K P.I.: 01186690432

Comune di	Provincia di
Petriolo	Macerata

COMMITTENTE: Amministrazione Comunale Petriolo

1	
PROGETTO:	
OGGETTO: Elab	orati indagini geofisiche HVSR
Elaborato n°:	Via: G. Leopardi
G.1	

Data	Motivazione	Redatto	Controllato	Approvato
Maggio 2018	Prima emissione	Geol. Lucarelli C.	Geol. Lucarelli C.	

N° commessa:

ID elaborato:

Scala:

1:

Campagna		Data	30.05.2018
Sito	Petriolo	Operatore	Geol. Lucarelli
Strumento Acquisitore	Tromino Grilla	Sismometro Tipo	Tromino Grilla
Frequenza Sismometro		Fondo scala	
Freq. Campionamento	128 Hz	GPS LOC	
Inizio Registrazione	09.21	Durata (sec)	1200
NOME FILE	Petriolo_07NEW	FORMATO FILE	PDF
	Coor	dinate	
	GPS	UTM	ALTRO
Latitudine			
Longitudine			
Quota (m)			

Indicazioni sul Sito: Via G. Leopardi - Petriolo	

IN	STALLAZIONE SISMON	METRO: ACCOPPIAME	ENTO
Roccia	X Asfalto	Sabbia	Erba
Terreno Riporto	Terreno_compatto	Terreno_bagnato	Terreno_secco
Cemento	Sterrato	Pavimentazione	Marciapiede
Modalità Accoppian	nento Sismometro Terreno);	
(appoggiato, interrato	o, cementato)	APPOGGIATO	

Foglio Campagna acquisizione HVSR 07

INSTALLAZIONE SISMOMETRO : GEOLOGIA			
Roccia Terreno Detrito X Riporto			
altro/commento:			
INSTALLAZIONE SISMOMETRO : POSIZIONAMENTO in			
Città_via_principale Città_via_secondaria Città_cortile Città_parco			
Strada_principale X Strada_secondaria Mura Mura_antiche			
Aperta_campagna Galleria Cunicolo			
altro/commento:			
INSTALLAZIONE GEOFONO : VICINANZA			
Fiume Canale Fabbrica Cantiere			
Lavori_stradali Alberi Ponti Viadotti			
Mura Gallerie fognature			
Edifici_nessuno Edifici_scarsi X Edifici_densi			
distanza_edificio_vicinonumero_piani_edificio_vicino:			
strutture_sotterranee:			
CONDIZIONI ATMOSFERICHE :			
vento_forte vento_debole no_vento			
pioggia_forte pioggia_debole no_pioggia			
altro/commento			
RUMORE RILEVABILE:			
Auto_nessuna Auto_poche Auto_tante			
X Mezzi_pesanti_nessuno Mezzi_pesanti_pochi Mezzi_pesanti_tanti			
X Pedoni_nessuno Pedoni_pochi Pedoni_tanti			
ALTRE SORGENTI DI RUMORE			

PETRIOLO_07NEW,

Strumento: TE3-0291/01-17

Formato dati: 32 byte Fondo scala [mV]: 51

Inizio registrazione: 30/05/18 09:21:32 Fine registrazione: 30/05/18 09:41:32

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

Durata registrazione: 0h20'00". Analizzato 87% tracciato (selezione manuale)

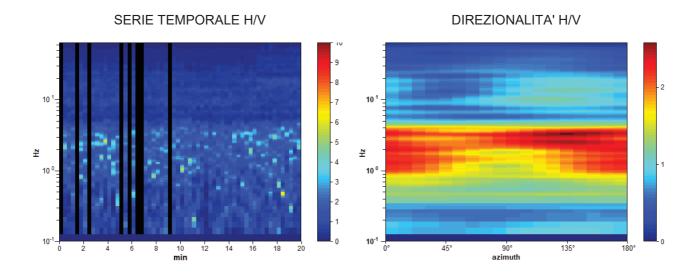
Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window

Lisciamento: 10%

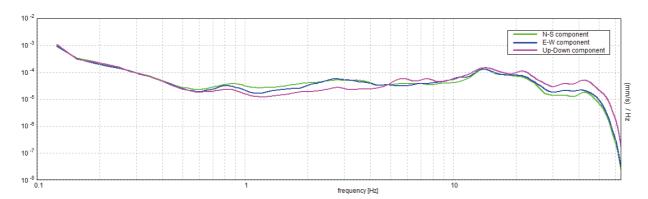
RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

Max. H/V at 3.22 ± 0.78 Hz. (In the range 0.0 - 64.0 Hz).


Average H/V

Average H/V

1


1

10

SPETTRI DELLE SINGOLE COMPONENTI

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 3.22 ± 0.78 Hz (nell'intervallo 0.0 - 64.0 Hz).

•	una curva H/V affidabile vrebbero risultare soddisfatti]		
f ₀ > 10 / L _w	3.22 > 0.50	OK	
$n_c(f_0) > 200$	3347.5 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$	Superato 0 volte su 156	OK	
7(,)			•
	er un picco H/V chiaro		
	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]		
[Almeno 5 su			NO
		ОК	NO
[Almeno 5 su (Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti]	OK OK	NO
[Almeno 5 su (Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	6 dovrebbero essere soddisfatti] 4.656 Hz		NO NO
[Almeno 5 su (Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti] 4.656 Hz 2.30 > 2		

L_w	lunghezza della finestra
n_w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f ⁻	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^{-1}) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per σ_f e $\sigma_A(f_0)$					
Intervallo di freq. [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \operatorname{per} \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

Campagna		Data	30.05.2018
Sito	Petriolo	Operatore	Geol. Lucarelli
Strumento Acquisitore	Tromino Grilla	Sismometro Tipo	Tromino Grilla
Frequenza Sismometro		Fondo scala	
Freq. Campionamento	128 Hz	GPS LOC	
Inizio Registrazione	09.21	Durata (sec)	1200
NOME FILE	Petriolo_120LD	FORMATO FILE	PDF
	Coor	rdinate	
	GPS	UTM	ALTRO
Latitudine			
Longitudine			
Quota (m)			

Indicazioni sul Sito: Via G. Leopardi - Petriolo	

INSTALLAZIONE SISMOMETRO: ACCOPPIAMENTO				
Roccia	X Asfalto	Sabbia	Erba	
Terreno Riporto	Terreno_compatto	Terreno_bagnato	Terreno_secco	
Cemento	Sterrato	Pavimentazione	Marciapiede	
Modalità Accoppiamento Sismometro Terreno:				
(appoggiato, interrato	, cementato)	.APPOGGIATO		

Foglio Campagna acquisizione HVSR 12

	INSTALLAZIO	NE SISMOMETRO) : GEOLOGIA	
Roccia	Terreno	Detrito	X Ripo	orto
altro/commento:				
INS	TALLAZIONE S	ISMOMETRO : PO	SIZIONAMEN	TO in
Città_via_principa	le Città_v	ria_secondaria	Città_cortile	Città_parco
Strada_principale	X Strada	a_secondaria	Mura	Mura_antiche
Aperta_campagna	Galleri	a	Cunicolo	
altro/commento:				
	INSTALLAZ	ONE GEOFONO:	VICINANZA	
Fiume	Canale	Fabbrica	Car	ntiere
Lavori_stradali	Alberi	Ponti	Via	dotti
Mura	Gallerie	fognature		
Edifici_nessuno	Edifici_scarsi	X Edifici_dens	i	
distanza_edificio_vic	inonume	ero_piani_edificio_vi	cino:	
strutture_sotterrand	ee:			
	CONDI	ZIONI ATMOSFEI	RICHE :	
vento_forte	vento_d	ebole no	_vento	
pioggia_forte	pioggia	a_debole	_ pioggia	
altro/commento				
	RU	MORE RILEVABI	LE:	
Auto_nessuna	Au	ito_poche	Auto_tan	te
X Mezzi_pesanti_	nessuno M	ezzi_pesanti_pochi	Mezzi_pe	esanti_tanti
X Pedoni_nessuno	Pe	edoni_pochi	Pedoni_ta	anti
ALTRE SORGENT	T DI RUMORE			

PETRIOLO_12_OLD,

Strumento: TRZ-0133/01-11

Formato dati: 16 byte Fondo scala [mV]: n.a.

Inizio registrazione: 30/05/18 09:21:48 Fine registrazione: 30/05/18 09:41:48

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

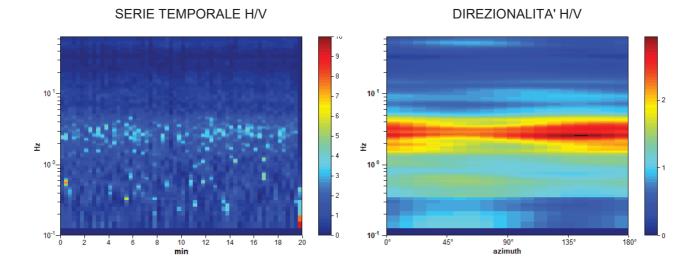
Dato GPS non disponibile

Durata registrazione: 0h20'00". Analisi effettuata sull'intera traccia.

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

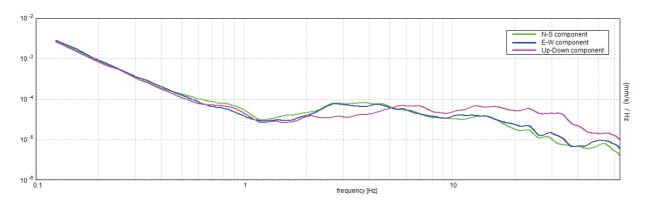
Tipo di lisciamento: Triangular window

Lisciamento: 10%


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

Max. H/V at 2.56 ± 0.28 Hz. (In the range 0.0 - 64.0 Hz).

Average H/V


Average H/V

10

SPETTRI DELLE SINGOLE COMPONENTI

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 2.56 ± 0.28 Hz (nell'intervallo 0.0 - 64.0 Hz).

Criteri per una curva H/V affidabile [Tutti 3 dovrebbero risultare soddisfatti]				
$f_0 > 10 / L_w$	2.56 > 0.50	OK		
$n_c(f_0) > 200$	3075.0 > 200	OK		
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 124	OK		
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$				
Critori no	or un nicco H/V chiaro			
•	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]			
[Almeno 5 su 6	•	ОК		
•	6 dovrebbero essere soddisfatti]	OK OK		
[Almeno 5 su 6] Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti] 1.031 Hz			
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	1.031 Hz 4.875 Hz	OK	NO	
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	1.031 Hz 4.875 Hz 2.56 > 2	OK	NO NO	

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \varepsilon(f_0)$
A ₀	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(\hat{f}^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
-A(-)	essere moltiplicata o divisa
$\sigma_{logH/V}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per σ_f e $\sigma_A(f_0)$					
Intervallo di freq. [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0					
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \operatorname{per} \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

Campagna		Data	30.05.2018
Sito	Petriolo	Operatore	Geol. Lucarelli
Strumento Acquisitore	Tromino Grilla	Sismometro Tipo	Tromino Grilla
Frequenza Sismometro		Fondo scala	
Freq. Campionamento	128 Hz	GPS LOC	
Inizio Registrazione	09.53	Durata (sec)	1200
NOME FILE	Petriolo_130LD	FORMATO FILE	PDF
	Coor	rdinate	
	GPS	UTM	ALTRO
Latitudine			
Longitudine			
Quota (m)			

Indicazioni sul Sito: Via G. Leopardi - Petriolo	

INSTALLAZIONE SISMOMETRO: ACCOPPIAMENTO				
Roccia	Asfalto	Sabbia	X Erba	
Terreno Riporto	Terreno_compatto	Terreno_bagnato	Terreno_secco	
Cemento	Sterrato	Pavimentazione	Marciapiede	
Modalità Accoppian	Modalità Accoppiamento Sismometro Terreno:			
(appoggiato, interrato	(appoggiato, interrato, cementato)APPOGGIATO			

Foglio Campagna acquisizione HVSR 13

INSTALLAZIONE SISMOMETRO : GEOLOGIA
Roccia X Terreno Detrito Riporto
altro/commento:
INSTALLAZIONE SISMOMETRO : POSIZIONAMENTO in
Città_via_principale Città_via_secondaria Città_cortile Città_parco
Strada_principale X Strada_secondaria Mura Mura_antiche
Aperta_campagna Galleria Cunicolo
altro/commento:
INSTALLAZIONE GEOFONO : VICINANZA
Fiume Canale Fabbrica Cantiere
Lavori_stradali Alberi Ponti Viadotti
Mura Gallerie fognature
Edifici_nessuno Edifici_scarsi X Edifici_densi
distanza_edificio_vicinonumero_piani_edificio_vicino:
strutture_sotterranee:
CONDIZIONI ATMOSFERICHE :
vento_forte vento_debole no_vento
pioggia_forte pioggia_debole no_pioggia
altro/commento
RUMORE RILEVABILE:
Auto_nessuna Auto_poche Auto_tante
X Mezzi_pesanti_nessuno Mezzi_pesanti_pochi Mezzi_pesanti_tanti
X Pedoni_nessuno Pedoni_pochi Pedoni_tanti
ALTRE SORGENTI DI RUMORE

PETRIOLO_13OLD,

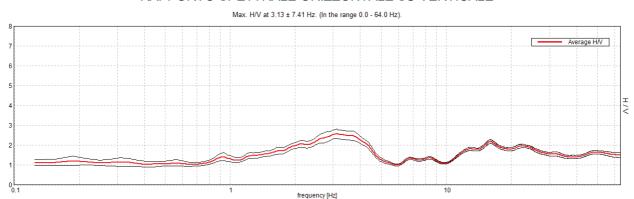
Strumento: TRZ-0133/01-11

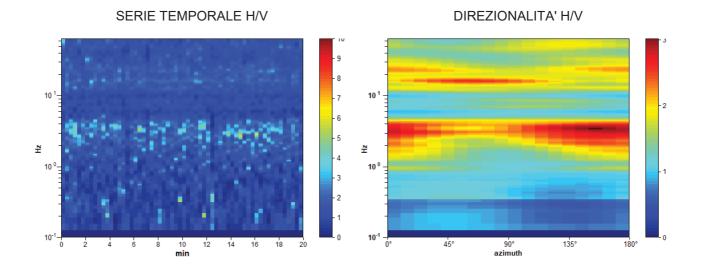
Formato dati: 16 byte Fondo scala [mV]: n.a.

Inizio registrazione: 05/30/18 09:53:33 Fine registrazione: 30/05/18 10:13:33

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

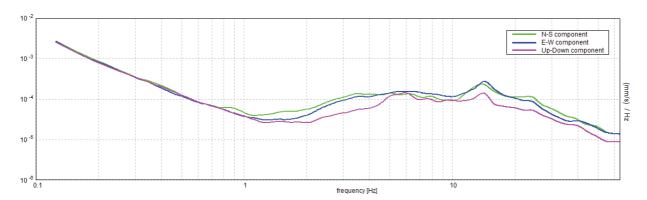
Dato GPS non disponibile


Durata registrazione: 0h20'00". Analisi effettuata sull'intera traccia.


Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window

Lisciamento: 10%


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

SPETTRI DELLE SINGOLE COMPONENTI

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 3.13 ± 7.41 Hz (nell'intervallo 0.0 - 64.0 Hz).

	una curva H/V affidabile rebbero risultare soddisfatti]		
f ₀ > 10 / L _w	3.13 > 0.50	OK	
$n_c(f_0) > 200$	3750.0 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$	Superato 0 volte su 151	OK	
$\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$			
	er un picco H/V chiaro		
[Almeno 5 su 6	6 dovrebbero essere soddisfatti]		
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$		OK	
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti]	OK OK	
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti] 1.125 Hz		
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti] 1.125 Hz 4.969 Hz	OK	NO
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	1.125 Hz 4.969 Hz 2.58 > 2	OK	NO NO

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f -w -w -o	frequenza attuale
f ₀	frequenza del picco H/V
	deviazione standard della frequenza del picco H/V
σ_{f}	' '
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f ⁻	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
AC.	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per σ_f e $\sigma_A(f_0)$									
Intervallo di freq. [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0									
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀				
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58				
$\log \theta(f_0) \operatorname{per} \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20				

Campagna		Data	30.05.2018		
Sito	Sito Petriolo		Geol. Lucarelli		
Strumento Acquisitore	Tromino Grilla	Sismometro Tipo	Tromino Grilla		
Frequenza Sismometro		Fondo scala			
Freq. Campionamento	128 Hz	GPS LOC			
Inizio Registrazione	09.53	Durata (sec)	1200		
NOME FILE	Petriolo_08NEW	FORMATO FILE	PDF		
	Coor	rdinate			
	GPS	UTM	ALTRO		
Latitudine					
Longitudine					
Quota (m)					

Indicazioni sul Sito: Via G. Leopardi - Petriolo	

INSTALLAZIONE SISMOMETRO: ACCOPPIAMENTO							
Roccia	Asfalto	Sabbia	X Erba				
Terreno Riporto	Terreno_compatto	Terreno_bagnato	Terreno_secco				
Cemento	Sterrato	Pavimentazione	Marciapiede				
Modalità Accoppian	Modalità Accoppiamento Sismometro Terreno:						
(appoggiato, interrato, cementato)APPOGGIATO							

Foglio Campagna acquisizione HVSR 08

INSTALLAZIONE SISMOMETRO: GEOLOGIA						
Roccia X T	erreno	Detrito	Riport	0		
altro/commento:		• • • • • • • • • • • • • • • • • • • •				
INSTALL	AZIONE SIS	SMOMETRO:	POSIZIONAMEN	TO in		
Città_via_principale	Città_via	a_secondaria	Città_cortile	Città_parco		
Strada_principale	X Strada_	secondaria	Mura	Mura_antiche		
Aperta_campagna	Galleria		Cunicolo			
altro/commento:	•••••	•••••				
INS	STALLAZIO	ONE GEOFON	O: VICINANZA			
Fiume Ca	nale	Fabbrica	Car	ntiere		
Lavori_stradali Al	beri	Ponti	Via	adotti		
Mura Ga	ıllerie	fognature				
Edifici_nessuno Ed	ifici_scarsi	X Edifici_d	ensi			
distanza_edificio_vicino	numero	_piani_edificio	_vicino:			
strutture_sotterranee:						
	CONDIZ	IONI ATMOSI	FERICHE:			
vento_forte	vento_del	oole	no_vento			
pioggia_forte	pioggia_	debole	no_pioggia			
altro/commento						
	RUM	ORE RILEVA	BILE:			
Auto_nessuna	Auto	o_poche	Auto_tan	te		
X Mezzi_pesanti_nessuno	o Mez	zi_pesanti_pocl	ni Mezzi_po	esanti_tanti		
X Pedoni_nessuno	Ped	oni_pochi	Pedoni_ta	anti		
ALTRE SORGENTI DI R	UMORE					
	• • • • • • • • • • • • • • • • • • • •					

PETRIOLO_08NEW,

Strumento: TE3-0291/01-17

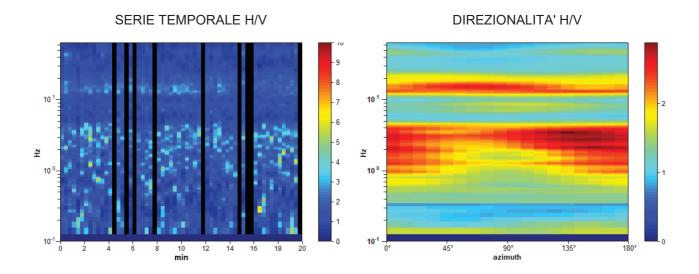
Formato dati: 32 byte Fondo scala [mV]: 51

Inizio registrazione: 30/05/18 09:53:33 Fine registrazione: 30/05/18 10:13:33

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

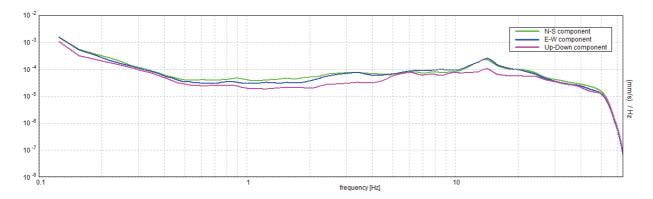
Dato GPS non disponibile

Durata registrazione: 0h20'00". Analizzato 85% tracciato (selezione manuale)


Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window

Lisciamento: 10%


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE

Max. H/V at 3.13 ± 3.46 Hz. (In the range 0.0 - 64.0 Hz).

SPETTRI DELLE SINGOLE COMPONENTI

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 3.13 ± 3.46 Hz (nell'intervallo 0.0 - 64.0 Hz).

	una curva H/V affidabile /rebbero risultare soddisfatti]		
$f_0 > 10 / L_w$	3.13 > 0.50	OK	
$n_c(f_0) > 200$	3187.5 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$	Superato 0 volte su 151	OK	
	er un picco H/V chiaro		I
Criteri po	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]		
Criteri po [Almeno 5 su 6			NO
Criteri po		OK	NO
Criteri po [Almeno 5 su 6] Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti]	OK OK	NO
Esiste f ⁻ in $[f_0/4, f_0] \mid A_{H/V}(f^-) < A_0 / 2$ Esiste f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_0 / 2$	6 dovrebbero essere soddisfatti] 4.938 Hz		NO NO
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	6 dovrebbero essere soddisfatti] 4.938 Hz 2.59 > 2		

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f -w -w -o	frequenza attuale
f ₀	frequenza del picco H/V
	deviazione standard della frequenza del picco H/V
σ_{f}	' '
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f ⁻	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
AC.	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per σ_f e $\sigma_A(f_0)$									
Intervallo di freq. [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0									
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀				
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58				
$\log \theta(f_0) \operatorname{per} \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20				

INVERSIONE CONGIUNTA MASW_MZS - HVSR_1

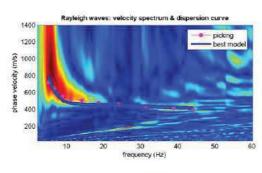
PETRIOLO (MC) - SCUOLE M. MARTELLO - G. GINOBILI

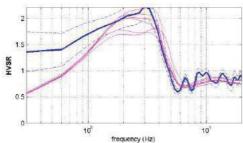
winMASW - Joint Inversion of Surface-Wave Dispersion Curves and HVSR

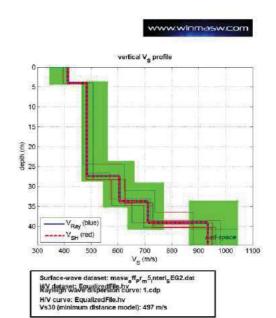
Main results

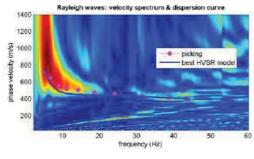
See "winMASW_report.txt" for further details.

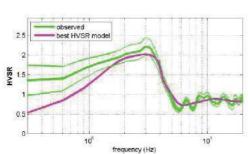
Date: 30 5 2018

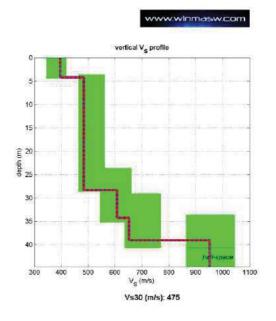

Time: 18 22


HVSR curve: EqualizedFile.hv


Dispersion file: 1.cdp


Dispersion Analysis: Rayleigh Waves


Le velocità (Vs) sono congruenti, l'analisi delle stratigrafie del sondaggio 1(DH) confermano la presenza di depositi colluviali – eluviali (porzione alterata e diagenizzata della Formazione) per i primi 29 m con velocità da 390 m/s a 490 m/s, con passaggio al substrato oltre 30 ml di profondità con velocità da 610 m/s a 950 m/s.



"Best" model (minimum distance from the Utopia point)

Vsv (m/s): 418, 507, 577, 697, 963

Thickness (m): 4.0, 24.2, 6.6, 5.5

Vs30 (m/s): 497.0

Seismic/Dynamic Shear modulus (MPa) (approximate values): 361 541 718 1049 2062

Best HVSR model (minimum misift with respect to HVSR)

Vs (m/s): 396, 485, 607, 652, 952

Thickness (m): 4.0, 24.0, 6.0, 5.0

Qs: 10, 16, 19, 25, 28

Vs30 (m/s): 475

Mean model:

Vs (m/s): 414, 484, 605, 711, 934

Thickness (m): 4.1, 23.3, 6.3, 5.4

Vs30 (m/s): 482

COMMITTENTE: AMMINISTRAZIONE COMUNALE PETRIOLO

ATTREZZATURA: SONDA A ROTAZIONE

LOCALITA':

PETRIOLO

SONDAGGIO Nº: S2

CANTIERE:

SCUOLA ELEMENTARE "G.GINOBILI"

DATA:

26/07/06

Profondità	Spessor strati	e Sezione de terreno	DESCRIZIONE LITOLOGICA		ampioni ndisturbati	P Falda	Prove i	n situ	Prove su	campioni	
F1000		TO TENO		□Ri N°		acquifera	BORER	5.P.T. c./ft.	VANE	Pocket Penetrom.	OSSERVAZIONI
0.00			Aggregato colluviale: aggregato argillo limo sabbioso di colore ocra. Materiale umido, poco consistente e caotico. A circa 5.00mt da p.c. è presente uno strato marrone scuro, maggiormente argilloso e con abbondanti spalmature carboniose.	, a	Quota		Kg/cmq	C./11.	Kg/cmq	3.20 3.00 3.50	
			A 11.50mt aumenta la componente argillosa ed il litotipo si presente maggiormente consistente.							3.00 3.00 3.50 4.00	
										4.00 3.70 4.00	
2	23.00									4.00	
										4.00 5.00 5.00	(c)
	TCB-CTCB-CTC									4.50	
	NAC CRE		Circa 23 00mt da na naccasia						4	.50	il a
		2 2 9 2 7 9 2 7 8	A circa 23.00mt da p.c. passaggio raduale da litotipo colluviale ad eluviale, quest'ultimo caratterizzato da una tratificazione di argilla e sabbia mal listinta.							.50	
3.00	がくと	c≨} ∫F	ormazione integra: alternanze cicliche di trati di argilla e livelli di sabbia.						5	00	
4.00	.00 <u>=</u>								5	.00	

COMMITTENTE: AMMINISTRAZIONE COMUNALE PETRIOLO

ATTREZZATURA: SONDA A ROTAZIONE

LOCALITA':

PETRIOLO

SONDAGGIO Nº: S1

CANTIERE:

SCUOLA ELEMENTARE "G. GINOBILI"

DATA:

26/07/06

					ampio			Prove i	n situ	Prove su	campioni	
		College Street S	DESCRIZIONE LITOLOGICA				luida	1111111		174515	5	OSSERVAZIONI
			Rimaneggiato acquife N° Quota	acquitera	BORER Kg/cmq	5.P.T. c./f1.	TEST Kg/cmq	Penetrom.				
0.00 0.70	0.70	Sezione del terreno	Massicciata stradale. Aggregato colluviale: aggregato argillo limo sabbioso di colore ocra. Materiale umido, poco consistente e caotico. A circa 6.30mt da p.c. sono presenti concrezioni carbonatiche abbondanti ed aumenta in percentuale la componente sabbiosa. A 12.80mt da p.c. prevale la componente argillosa ed il sedimento, di colore marrone scuro, è maggiormente plastico. A circa 18.00 mt da p.c. aumenta la componente sabbiosa e si individua un graduale passaggio verso una tipologia eluviale caratterizzata da alternanze irregolari di argilla e sabbia.	■ Is	maneg Qu	rbato	luida	VANE BORER	5.P.T.	VANE TEST	Pocket Penetrom.	E' stata eseguituna prova SPT a 3mt da p.c. Numero di colpi: 3-7-9 E' stata eseguituna prova SPT a 10.80 mt da p.c. Numero di colpi: 6-12-13 I foro d sondaggio è stata attrezzato con un tubo in pvc, pee effettu are la prova down-hole e pozzetto di protezione. Durante ed a termine de son da gio geognostico nor son o state rilevate venute
	23.30										1.40 1.70 3.00 2.50 3.00 4.50 4.50 4.50 4.50	idriche.

COMMITTENTE: AMMINISTRAZIONE COMUNALE PETRIOLO

ATTREZZATURA: SONDA A ROTAZIONE

LOCALITA': PETRIOLO

SONDAGGIO Nº: S1

CANTIERE: SCUOLA ELEMENTARE "G. GINOBILI"

DATA:

26/07/06

			Campi		_	Prove in situ		Prove su campioni			
fondità la p.c.	Spessore strati	Sezione del terreno	DESCRIZIONE LITOLOGICA	III I	ndisturb	ito Falda to acquifera	VANE		VANE	Pocket	OSSERVAZION
				N°	7.1		BORER Kg/cmq	5.P.T. c./ft.	TEST Kg/cmq	Penetrom.	
24.00	2.00		Formazione integra: alternanze regolari e cicliche di strati di argilla e livelli di sabbia.							5.00 5.00 5.00	
			*							9	

COMUNE DI PETRIOLO

Provincia di Macerata

ADEGUAMENTO SISMICO SCUOLA ELEMENTARE G. GINOBILI COMUNE DI PETRIOLO

INDAGINE SISMICA DOWN-HOLE (DH)

RELAZIONE GEOFISICA

Committente

: Comune di Petriolo

Rif./File

: 25roga_petr220_06

Allegato

: unico

Data

: 08.08.2006

GEOS geofisica s.n.c. dei Drr. Geoill G. Wapoleone e D. Grillini Largo Grammercato, 3 - 60035 JESI (AN) Tel. e (ax) 8731.200260 Partita VA 01329540429

1.0 GENERALITA'

Su incarico della Spett.le Committenza è stato eseguito in prossimità della scuola elementare del Comune di Petriolo, un carotaggio sismico in foro registrato con tecnica down-hole (DH). L'indagine ha avuto come obiettivo la caratterizzazione sismica dei terreni di fondazione interessati dall'adeguamento sismico del plesso scolastico ai sensi dell'OPCM n°3274 del 20/03/2003 e successive modificazioni ed integrazioni, concernente le norme tecniche per il progetto, la valutazione e l'adeguamento sismico degli edifici.

2.0 CAROTAGGIO SISMICO D.H. - INTERPRETAZIONE

Il carotaggio sismico è stato registrato nel foro di sondaggio S1 mediante tecnica Down-Hole energizzando in superficie con onde di taglio polarizzate. Le registrazioni delle velocità longitudinali e trasversali sono state acquisite con un geofono triassiale da foro ed i dati digitali, interpretati mediante specifico software applicativo.

I sismogrammi (cfr. allegato) risultano di discreta qualità mostrando un carattere sismico quasi sempre netto e definito, raramente disturbato dal rumore di fondo. I primi arrivi utilizzati per il calcolo delle velocità longitudinali Vp e di taglio Vs, sono stati introdotti nella tabella di calcolo per la determinazione delle velocità medie ed intervallari. Dal processo interpretativo si nota un generale e graduale incremento delle velocità sismiche intervallari, longitudinali Vpi e trasversali Vsi con la profondità, secondo un normale trend di compattazione dei terreni (overburden).

3.0 CALCOLO DELLE COSTANTI ELASTICHE

Dalle relazioni reciproche che legano le velocità longitudinali Vp con quelle di taglio Vs, sono state calcolate le costanti elastiche dei terreni in condizioni dinamiche. La tabella Calcolo automatico moduli elastici, illustra i valori ottenuti sperimentalmente di : Coefficiente di Poisson (ν), Modulo di Young o di elasticità longitudinale (E), Modulo di Bulk o di compressibilità volumetrica (K), e Modulo di Rigidità o di Elasticità tangenziale (G). Detti parametri ricavati come media degli intervalli di misura, si riferiscono all'intervallo della copertura di alterazione fino alla profondità di 22,0 m circa ed alla sottostante formazione argillosa (22,0 – 26,0 m). Le costanti elastiche tendono ad assumere valori significativi ed in particolare il modulo di compressibilità K, nell'ambito del substrato geologico.

4.0 DETERMINAZIONE DELLA CATEGORIA DI SUOLO DI FONDAZIONE

Per la definizione dell'azione sismica di progetto ai sensi dell' OPCM 3274/03 e successive modificazioni, la velocità media di propagazione delle onde di taglio nei primi 30 m di profondità è calcolata con la seguente espressione.

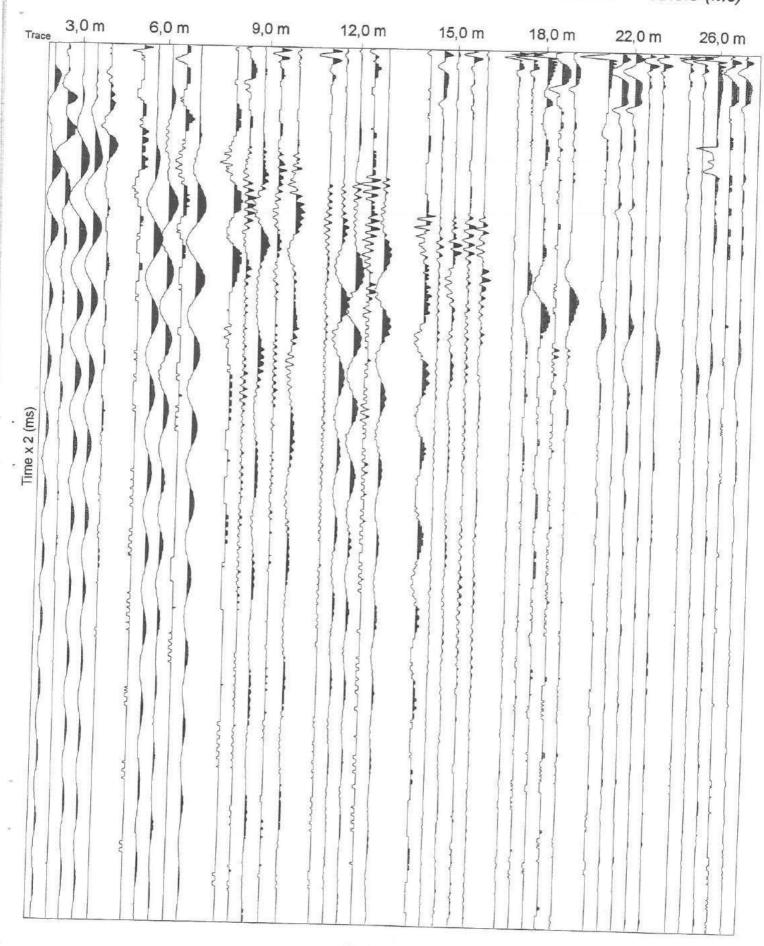
$$Vs30 = \frac{30}{\sum_{i=1,N} \frac{hi}{Vi}}$$

nella quale il valore Vs₃₀ è riferito all'intervallo di profondità rispetto al piano di posa della fondazione.

Nel caso specifico considerando la quota di imposta della fondazione a -4,00 m dal piano campagna ed estendendo i valori delle velocità Vs ottenute nell'ultimo intervallo di misura, fino alla profondità di 30 m, si ottiene, sostituendo:

$$Vs_{30} = 377 \text{ m/sec}$$

valore che identifica la categoria di appartenenza dei terreni in : Categoria B, ovverosia tenendo conto della geologia locale, in "Depositi di sabbie e ghiaie molto addensate o argille molto consistenti".


Jesi. 08.08.2006

GEOS geofisica snc

dei Drr. Geolf, G. Napoleone e D. Grillini Largo Granmercato, 3 - 60035 JESI (AN) Tel/ e Fax 0731,200260 Pertita TVA 01329540429

<u>Allegati :</u> Sismogrammi Tabulato calcolo velocità Tabulato calcolo moduli elastici

Prova Down-Hole Sondaggio S1 - Scuola Elementare "G. Ginobili" Petriolo (Mc)

GEOS geofisica s.n.c. Largo Grammercato, 3 - 60035 JESI (AN) tel. & fax 0731/200260 Committente: Dr. Geol. P. ROGANI Offset (m) 1,47 Località Petriolo (MC) Rivest./diam. int.: si / 76 mm Data 07/08/2006 File dh_roga_s1 Sondaggio: S1 Geofono triax. St. Rec. Prof. DIP DIS dΖ Ts Vpi Vsi Vpm Vsm (m.)(m.) (msec) (msec) (msec) (m/sec) (msec) (m/sec) (m/sec) (m/sec) 1 125 3,0 3,0 6.00 6,00 19,80 19,80 557 557 169 169 0,449 0.449 2 125 6,0 3,0 11,80 5,80 27,90 8,10 494 524 322 221 0,131 0,391 3 126 9.0 3,0 15,80 4,00 35,30 7,40 726 577 388 258 0.301 0,375 4 126 12,0 3,0 21,00 5,20 43,40 8,10 571 576 364 279 0,158 0.347 5 127 15,0 3,0 24,40 3,40 51,40 8,00 872 618 371 293 0,389 0,355 6 127 18,0 3,0 28,00 3,60 59,50 8,10 828 645 368 304 0,377 0,358 7 128 22,0 4,0 31,50 3,50 71,00 11,50 1135 700 347 311 0.449 0,377 8 128 26.0 4,0 33,60 2,10 80,80 9,80 1890 775 407 322 0,476 0,395 Vpi: Velocità compressionali intervallari; Vsi : Velocità trasversali intervallari Vpm : Velocità compressionali medie; Vsm : Velocità trasversali medie : Coefficiente di Poisson intervallare um : Coefficiente di Poisson medio

GEOS s.n.c. servizi geologici

Largo Grammercato, 3 - 60035 JESI (AN) tel. & fax 0731/200260

Committente:

Dr. Geol. P. ROGANI

Località : Data

Petriolo (MC) 07/08/2006

Sondaggio :

-	Sec.	
P= 11	0	

ce_roga_s1

Prof. (m)	g ton/mc	Vp (msec)	Vs (msec)	n	E Kg/cmq	K Kg/cmq	R Kg/cmq
22,0	1,87	674	330	0,342	5467	5780	2036
26,0	1,90	1512	377	0,467	7922	39836	2700
		19			-	i.	

 $v = 0.5(Vp/Vs)^2 - 1 / (Vp/Vs)^2 - 1$

Coefficiente di Poisson

 $E = gVs^{2}[(3Vp^{2}-4Vs^{2})/(Vp^{2}-Vs^{2})]$

Modulo di Elasticità long. (Young)

 $K = g(Vp^2-4/3Vs^2)$

Modulo di Compressiblità volum.(Bulk)

 $R = gVs^2$

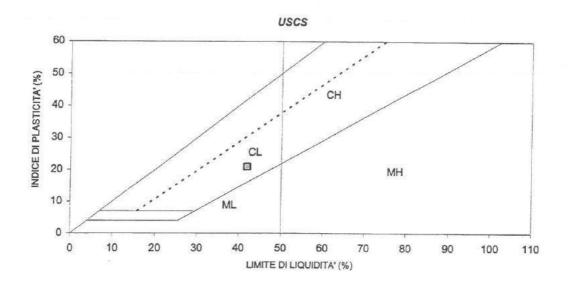
Modulo di Rigidità

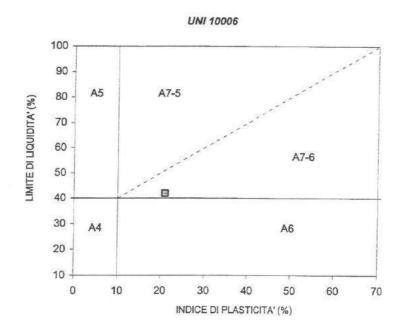
Vp: Velocità compressionali medie intervallari

Vs : Velocità trasversali medie intervallari

g : Peso di volume medio del terreno

TABELLA RIASSUNTIVA


COMMITTENTE CANTIERE


COMUNE DI PETRIOLO SCUOLA ELEMENTARE "G. GINOBILI"

SONDAGGIO		1	-		
CAMPIONE		1			-
PROFONDITA' (m)		4,5		-	-
					1
W.					
CARATTERISTICHE FISICHE					
Contenuto in acqua	%	23,3	-		
Massa volumica	Mg/m ³	1,89	_		1
Massa volumica secca	Mg/m ³	1.53	-		
Massa volumica granuli solidi	Mg/m ³	2,67			-
Indice dei vuoti	_	0,742		-	-
Grado di saturazione	-	0,84			-
DISTRIBUTION				-1	
DISTRIBUZIONE GRANULOMETRICA					
Frazione ghiaiosa	%	-	-	-	-
Frazione sabbiosa	%	-	-	-	-
razione limosa	%	-	1925	-	
razione argillosa	%	-		-	-
JMITI DI CONSISTENZA					
imite di liquidità	%	40	1	1	
ndice di plasticità	%	42		. ±	1340
ndice di consistenza	76	21	+	(m)	-
ndice di liquidità	-	0,89	8		-
ndice di attività	-	0,11	-	-	-
	•	•	-	-	-
LASSIFICAZIONE (*)					
.N.I.10006		A7-6	-		
.S.C.S.		CL			
AGLIO DIRETTO [PICCO]					
pesione intercetta	kPa	6,4	-	-	
ngolo di resistenza al taglio	•	27,8			-
OMPRESSIONE NON CONFINATA					
esistenza al taglio non drenata	VP-	T			
formazione a rottura	kPa %	- !	-	-	2
The second	%		-	- 1	(48)
OMETRICA					
dulo edometrico (24,5 - 49,0 kPa)	kPa	6901			
dulo edometrico (49,0 - 98,1 kPa)	kPa	5396	-		
dulo edometrico (98,1 - 196,1 kPa)	kPa	0000	- 1	-	-

^(*) Passante allo 0,075 mm stimato maggiore del 50%.

COMMITTENTE CANTIERE COMUNE DI PETRIOLO SCUOLA ELEMENTARE "G. GINOBILI"

COMMITTENTE COMUNE DI PETRIOLO

CANTIERE

SCUOLA ELEMENTARE "G. GINOBILI"

COMMESSA

VERBALE D'ACCETTAZIONE Data ricevimento campione

Data apertura campione

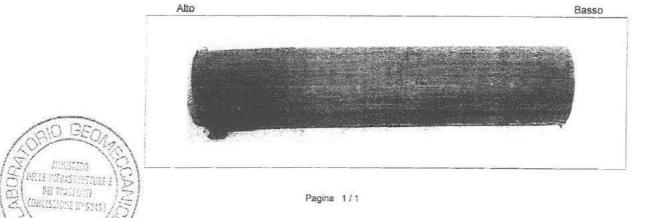
202

1024

07/08/06 08/08/06 SONDAGGIO

CAMPIONE PROFONDITA' [m]

4,50


CARATTERISTICHE GENERALI

Apertura e descrizione visiva dei campioni ASTM 2488 - AGI 1977

Contenitore	Fustella	metallica
Diametro campione	mm	86
Lunghezza campione	mm	380

Classe di qualità [AGI '77]	Q5
Reazione HCI	Positiva

Rp	Tv	PROGRAMMA			T
kg/cm ²		PROVE DI LABORATORIO	STRA	TIGRAFIA	DESCRIZIONE LITOLOGICA
2,9		Contenuto in acqua Massa volumica Massa volumica dei granuli solidi Limiti di consistenza	10 on	\$5555555555555555555555555555555555555	
2,7		Taglio diretto Edometrica	20 cm	\$	
2,3			30 cm		
			40 cm		
			50 cm		
			60 cm		

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

COMMITTENTE

COMUNE DI PETRIOLO

CANTIERE

SCUOLA ELEMENTARE "G. GINOBILI"

202

1024

COMMESSA

SONDAGGIO

VERBALE D'ACCETTAZIONE

CAMPIONE

Data ricevimento campione Data esecuzione prova

07/08/06 08/08/06 PROFONDITA' [m] 4,50

DESCRIZIONE DEL CAMPIONE

CLASSE DI QUALITA' [AGI 77]

Limo argilloso debolmente sabbioso.

CONTENUTO IN ACQUA

UNI CEN ISO/TS 17892-1

Massa capsula	9	21,02
Massa capsula + terreno umido	9	96,70
Massa capsula + terreno secco	g	82,39

Contenuto in acqua	w	%	23,3

OSSERVAZIONI:		

Il Direttore Certificato numero Dr. Ugo-Sergió O azi 2414 Data di emissione 04.09.06

Lo Sperimentatore Dr. Michele Orazi

LABORATORIO GEOMECCANICO

VIA CORPO ITALIANO DI LIBERAZIONE, 42 - 61100 PESARO

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

COMMITTENTE CANTIERE

COMUNE DI PETRIOLO SCUOLA ELEMENTARE "G. GINOBILI"

COMMESSA

VERBALE D'ACCETTAZIONE

Data ricevimento campione Data esecuzione prova

202 1024 07/08/06 08/08/06

SONDAGGIO CAMPIONE PROFONDITA' [m]

4,50

DESCRIZIONE DEL CAMPIONE CLASSE DI QUALITA' [AGI 77] Limo argilloso debolmente sabbioso.

MASSA VOLUMICA DEI TERRENI A GRANA FINE

UNI CEN ISO/TS 17892-2

METODO CON MISURAZIONI LINEARI

Massa provino	g	75,68
Volume provino	cm ³	40,00

Massa volumica	0	Mg/m ³	1,89

SERVAZIONI:		

Certificato numero	Il Direttore Dr. Ugo-Sergio Orazi	Lo Sperimentatore Dr. Michele Orazi
Data di emissione	ML'	16.
04-63-66		

LABORATORIO GEOMECCANICO

VIA CORPO ITALIANO DI LIBERAZIONE, 42 - 61100 PESARO

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

COMMITTENTE CANTIERE

COMUNE DI PETRIOLO

SCUOLA ELEMENTARE "G. GINOBILI"

COMMESSA

202

SONDAGGIO

VERBALE D'ACCETTAZIONE Data ricevimento campione

1024 07/08/06 CAMPIONE

4,50

Data esecuzione prova

08/08/06

PROFONDITA' [m]

DESCRIZIONE DEL CAMPIONE CLASSE DI QUALITA' [AGI 77]

Limo argilloso debolmente sabbioso.

MASSA VOLUMICA DEI GRANULI SOLIDI

UNI CEN ISO/TS 17892-3

METODO DEL PICNOMETRO Metodo A

Massa terreno secco	g	61,01
Massa picnometro + acqua	g	441,72
Massa picnometro + acqua + terreno	g	479,94
Temperatura di prova	°C	23

	100	2	
Massa volumica dei granuli solidi	D.	Ma/m3	2,67

SSERVAZIONI:		

Certificato numero Il Direttore Dr. Ugo-Sergio Oraz 2413 Data di emissione 04-09-06

Lo Sperimentatore Dr. Michele Orazi

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

COMMITTENTE CANTIERE COMUNE DI PETRIOLO

SCUOLA ELEMENTARE "G. GINOBILI"

COMMESSA

202

SONDAGGIO

1

VERBALE D'ACCETTAZIONE Data ricevimento campione

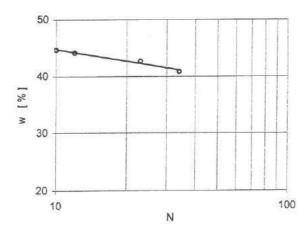
1024 07/08/06 CAMPIONE PROFONDITA' [m]

4,50

Data esecuzione prova

08/08/06

Limo argilloso debolmente sabbioso.


DESCRIZIONE DEL CAMPIONE CLASSE DI QUALITA' [AGI 77]

Q5

LIMITI DI CONSISTENZA

CNR UNI 10014

		Limite di	plasticità		Limite d	i liquidità	
Massa capsula	g	8,67	9,13	8,70	8,69	9,28	9,16
Massa capsula + terreno umido	9	19,10	18,79	42,54	35,97	40,79	41,05
Massa capsula + terreno secco	g	17,27	17,10	32,17	28,06	31,36	31,20
Contenuto in acqua	%	21,3	21,2	44,2	40,8	42,7	44,7
Colpi	N	-	-	12	34	23	10

Limite di plasticità	WP	%	21
Limite di liquidità	W _L	%	42
Indice di plasticità	l _P	%	21
Limite di ritiro	Ws	%	

OSSERVAZIONI:

Certificato numero

Il Direttore

Dr. Ugo-Sergio Orazi

Data di emissione

Oi: 09 06

Il Direttore

Dr. Michele Orazi

LABORATORIO GEOMECCANICO

VIA CORPO ITALIANO DI LIBERAZIONE, 42 - 61100 PESARO

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

COMMITTENTE CANTIERE

COMUNE DI PETRIOLO

SCUOLA ELEMENTARE "G. GINOBILI"

COMMESSA

VERBALE D'ACCETTAZIONE

202 1024 SONDAGGIO

0,006

Data ricevimento campione Data esecuzione prova

07/08/06 08/08/06

3600

CAMPIONE PROFONDITA' [m]

mm/min

4,50

DESCRIZIONE DEL CAMPIONE

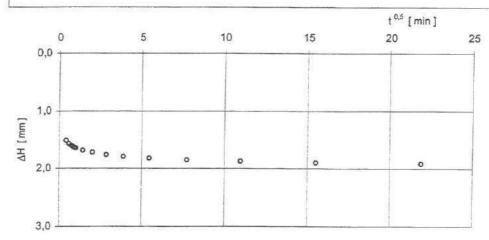
CLASSE DI QUALITA' [AGI 77]

Sezione provini

Limo argilloso debolmente sabbioso.

mm²

TAGLIO DIRETTO [VALORI DI PICCO]


UNI CEN ISO/TS 17892-10

			10	elocità di defo	maziona		1
Altezza iniziale provini	20	mm		Total di doloniazione		m/s	1,0E-0
Provino					1	2 Δ	3
Contenuto in ac	qua	V	N ₀	%	25,0	24,9	24,9
Massa volumi	ca		ρο	Mg/m ³	1,90	1,92	1,93
Massa volumica	secca	1	Pα	Mg/m³	1,52	1,54	1,55
Massa volumica granuli			ρ _s	Mg/m ³	2,67		
Indice dei vuo	ti	e	e ₀	-	0,756	0,737	0,727
Grado di saturaz	ione	S	RÓ		0,88	0,90	0,91
Tensione normale ef	ficace	c	5 '	kPa	98,1	196,1	294,2
Cedimento di consol	idazione	ΔΙ	Н	mm	0,67	1,49	1,91

TIPO DI APPARECCHIATURA; Macchina modello Casagrande con rilevazione automatica dei dati.

PREPARAZIONE PROVINI: Procedura interna A5 2002; fustellamento verticale.

OSSERVAZIONI:

Certificato numero Il Direttore Dr. Ugo-Sergio Oz 2421 Data di emissione 04.03.06

Lo Sperimentatore Dr. Michele Orazi

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

COMMITTENTE CANTIERE COMUNE DI PETRIOLO

SCUOLA ELEMENTARE "G. GINOBILI"

COMMESSA

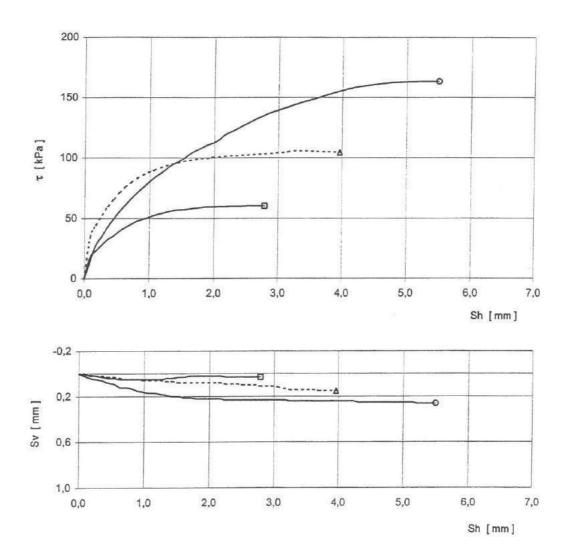
202 1024 SONDAGGIO CAMPIONE 1

VERBALE D'ACCETTAZIONE Data ricevimento campione Data esecuzione prova

1024 07/08/06 08/08/06 PROFONDITA' [m]

4,50

DESCRIZIONE DEL CAMPIONE


Limo argilloso debolmente sabbioso.

CLASSE DI QUALITA' [AGI 77]

Q5

TAGLIO DIRETTO [VALORI DI PICCO]

UNI CEN ISO/TS 17892-10

Il Direttore	Lo Sperimentatore
Dr. Ugo-Sergio Orazi	Dr. Michele Orazi
////	11.
~ 11	1
	Il Direttore Dr. Ugo-Sergio Orazi

LABORATORIO GEOMECCANICO

VIA CORPO ITALIANO DI LIBERAZIONE, 42 - 61100 PESARO

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

COMUNE DI PETRIOLO

CANTIERE

SCUOLA ELEMENTARE "G. GINOBILI"

202

COMMESSA

SONDAGGIO

VERBALE D'ACCETTAZIONE Data ricevimento campione

1024 07/08/06 CAMPIONE

Data esecuzione prova

PROFONDITA' [m]

08/08/06

DESCRIZIONE DEL CAMPIONE CLASSE DI QUALITA' [AGI'77] Limo argilloso debolmente sabbioso.

TAGLIO DIRETTO [VALORI DI PICCO]

UNI CEN ISO/TS 17892-10

Sh	Provi	no 1	Provi	no 2	Provir	no 3
Sn	τ	Sv	τ	Sv	τ	Sv
mm	kPa	mm	kPa	mm	kPa	mm
0,00	0,0	0,00	0,0	0,00	0,0	0,00
0,09	18.0	0,01	34,9	0,00	14,4	0,02
0,18	22,9	0,01	44,7	0,02	27,8	0,04
0,27	28,1	0,02	53,1	0,02	35,4	0,05
0,36	32,4	0,03	60,2	0,02	43,3	0.06
0,45	35,7	0,04	66,2	0,03	50,1	0,08
0,54	39,5	0,04	71,6	0,03	55,8	0,09
0,63	42,8	0,05	76,3	0,04	61,3	0,12
0.72	45,2	0,05	79,8	0,05	66,5	0,12
0,81	47,7	0,05	83,1	0,05	71,1	0,13
0.90	49,3	0,05	85,8	0,05	75,5	0,15
0,99	50,9	0,05	88,3	0,06	79,8	0,16
1,08	52,6	0,05	89,9	0,06	83,6	0,17
1,17	53,9	0,05	91,8	0,06	87,2	0,17
1,26	55,0	0,05	93,4	0,06	90,7	0,18
1,35	56.1	0,04	94,8	0.07	94,3	0,19
1,44	56,9	0.04	95,9	0,07	96,7	0,20
1,53	57,2	0,03	97,0	0,08	99,4	0,20
1,62	57,8	0,03	97.8	0,08	103,0	0,21
1,71	58,3	0,02	98,6	0,08	105,7	0.21
1.80	58,8	0.02	99,2	0,08	107,9	0,22
1,89	59,4	0,02	99,4	0,08	110,3	0,22
1,98	59,4	0,02	100,2	0,08	112,0	0,22
2,07	59,7	0,02	100,5	0,08	114,7	0,22
2,16	59,7	0,02	101,1	0,08	118,8	0,22
2,25	59,9	0,03	101,3	0,09	121,2	0,23
2,34	59,9	0,03	101,3	0,09	123,4	0,23
2,43	59,9	0,03	101,9	0,09	126,1	0,23
2,52	60,2	0,03	102,2	0,10	128,6	0,23
2,61	60,2	0,03	102,4	0,10	131.0	0,23
2,70	60,2	0,03	102,7	0,10	133,2	0,23

Sh -	Provir	10 1	Provin	02	Provin	10 3
Sn -	τ	Sv	τ	Sv	τ	Sv
mm	kPa	mm	kPa	mm	kPa	mm
2,79	60,2	0,03	103,0	0,11	135,4	0,23
2,88			103,2	0,11	137,3	0,23
2,97			103,8	0,11	138,9	0,23
3,06			104,1	0,12	140,6	0,23
3,15			104,9	0,13	142,2	0,23
3,24			105,4	0,14	143,8	0,24
3,33			105,4	0,14	145,5	0,24
3,42		1 1	105.4	0,14	146.8	0,24
3,51			105,2	0,14	148,2	0,24
3,60			105,2	0,14	149,6	0,24
3,69			104,9	0,15	151,2	0,24
3,78			104,9	0.15	152,6	0,24
3,87		1	104,6	0,15	153,9	0,24
3,96		1 1	104,3	0,15	155,3	0,24
4,05		4 4			156,6	0,24
4,14		1 1		1 1	157,7	0,24
4,23		1		1	158,8	0,24
4,32		1		1 1	159,4	0,25
4,41		1 1			160,2	0,25
4,50					160,7	0,25
4,59				1 1	161,3	0,25
4,68				1 1	161,8	0,25
4,77		1 1		1 1	162,4	0,25
4,86		1			162,6	0,25
4,95		1			162,9	0,25
5,04		1 1			163,2	0,25
5,13		1 1			163,2	0,25
5,22		1 1			163,5	0,26
5,31		1 1		1 1	163,5	0,26
5,40					163,5	0,26
5,49		1 1		1	163,5	0,26

Certificato numero 1525 Data di emissione

04.08.06

Il Direttore Dr. Ugo-Sergio Q Lo Sperimentatore Dr. Michele Orazi

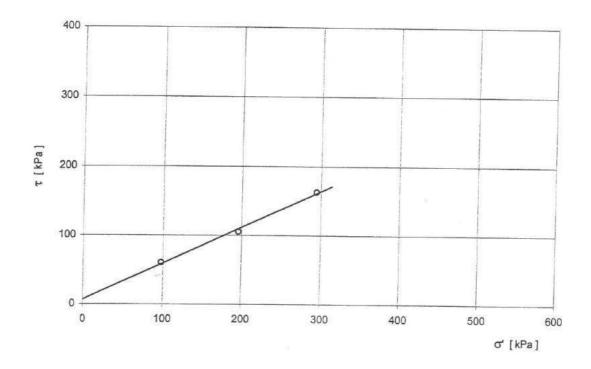
COMMITTENTE CANTIERE

COMUNE DI PETRIOLO SCUOLA ELEMENTARE "G. GINOBILI"

SONDAGGIO CAMPIONE

1

PROFONDITA' [m]


4,50

DESCRIZIONE DEL CAMPIONE CLASSE DI QUALITA' [AGI'77]

Limo argilloso debolmente sabbioso.

TAGLIO DIRETTO [VALORI DI PICCO]

UNI CEN ISO/TS 17892-10

Coesione intercetta	c'	kPa	6,4
Angolo di resistenza al taglio	ϕ '	0	27,8

LABORATORIO GEOMECCANICO

VIA CORPO ITALIANO DI LIBERAZIONE, 42 - 61100 PESARO

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

COMMITTENTE

COMUNE DI PETRIOLO

CANTIERE

SCUOLA ELEMENTARE "G. GINOBILI"

COMMESSA

VERBALE D'ACCETTAZIONE

202 1024 SONDAGGIO

1

Data ricevimento campione Data esecuzione prova

07/08/06 08/08/06 CAMPIONE PROFONDITA' [m]

4,50

DESCRIZIONE DEL CAMPIONE

Limo argilloso debolmente sabbioso.

CLASSE DI QUALITA' [AGI'77]

EDOMETRICA [IL] UNI CEN ISO/TS 17892-5

o',	ΔH/H ₀	е	M	C _v
kPa	%		kPa	m²/s
12,3				
24,5	0,06	0,755		
49,0	0,41	0,749	6901	1
98,1	1,32	0,733	5396	5,9E-07
		200000000000000000000000000000000000000	6950	2,9E-07
196,1	2,73	0,708	8107	6,6E-08
392,3	5,15	0,665	90.000-2-0000	0,02-00
784,6	8,66	0,604	11177	
1569,1			17395	
1509,1	13,17	0,525	34372	
3138,2	17,74	0,444		
784,6	16,96	0,458		
196,1	15,78	0,479		
49,0	15,11	0,491		
12,3	1			

Sezione	Α	mm ²	2000,0
Altezza iniziale	Ho	mm	20,0
Contenuto in acqua	W ₀	%	24,3
Massa volumica	ρ	Mg/m ³	1,89
Massa volumica secca	ρ _d	Mg/m ³	1,52
Massa volumica granuli	ρ _s	Mg/m ³	2,67
Indice dei vuoti	e ₀	1-	0,756
Grado di saturazione	S _{R0}	-	0,86
Temperatura di prova	Т	°C	26
Intervallo di carico	h	24	

OSSERVAZIONI:	****	

APPARECCHIATURA: Edometro calibrato a fulcro fisso;anello fisso;a doppio drenaggio;uso di carta da filtro;anello lubrificato.

PREPARAZIONE PROVINO: Procedura interna A5 2002; fustellamento verticale.

Certificato numero

2 4 2 2

Data di emissione

C4 65 66

Lo Sperimentatore Dr. Michele Orazi

- w

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

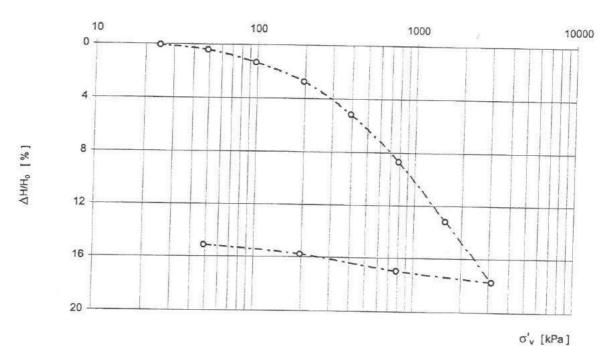
COMMITTENTE CANTIERE

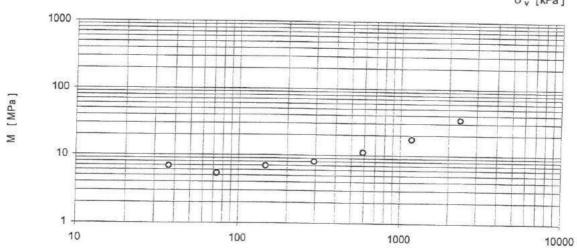
COMUNE DI PETRIOLO SCUOLA ELEMENTARE "G. GINOBILI"

COMMESSA

VERBALE D'ACCETTAZIONE Data ricevimento campione 202 1024 07/08/06 08/08/06 SONDAGGIO CAMPIONE PROFONDITA' [m]

1 1 4,50


Data esecuzione prova


DESCRIZIONE DEL CAMPIONE CLASSE DI QUALITA' [AGI 77] .

Limo argilloso debolmente sabbioso.

EDOMETRICA [IL]

UNI CEN ISO/TS 17892-5

Certificato numero
2422

Data di emissione
04.02.06

Il Direttore
Dr. Ugo-Sergio Orazi

Lo Sperimentatore Dr. Michele Orazi

Pagina 2/3

Concessione ai laboratori per lo svolgimento delle prove geotecniche sui terreni [settore a] ed il rilascio dei relativi certificati ufficiali Decreto del Presidente della Repubblica n. 246 del 21 aprile 1993, art.8, comma 6. CONCESSIONE n. 52491 del 11/10/2004

COMMITTENTE CANTIERE COMUNE DI PETRIOLO SCUOLA ELEMENTARE "G. GINOBILI"

COMMESSA

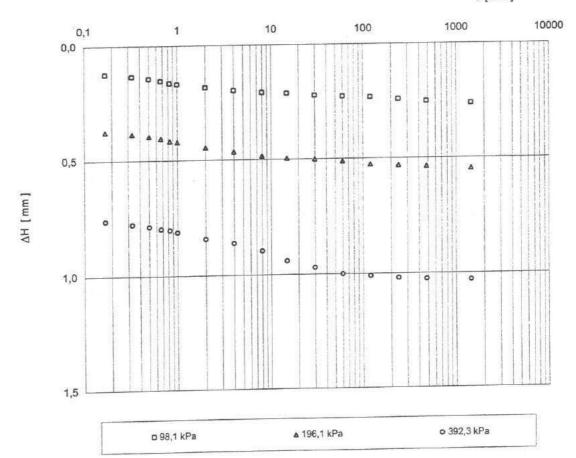
VERBALE D'ACCETTAZIONE

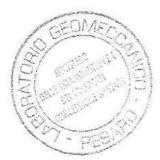
Data ricevimento campione Data esecuzione prova 202 1024 07/08/06

08/08/06

SONDAGGIO CAMPIONE PROFONDITA' [m]

1 1 4,50


DESCRIZIONE DEL CAMPIONE CLASSE DI QUALITA' [AGI 77] Limo argilloso debolmente sabbioso.


Q5

EDOMETRICA [IL]

UNI CEN ISO/TS 17892-5

t [min]

Certificato numero
2422

Data di emissione
04.09.06

Il Direttore Dr. Ugo-Sergio Orazi Lo Sperimentatore Dr. Michele Orazi

Pagina 3/3

STUDIO DI GEOLOGIA

COMUNE: PETRIOLO

LOCALITA': PLESSO SCOLASTICO

COMMITTENTE: Amministrazione comunale

Sondaggio

Via G.B. Velluti 118 Macerata tel 0733/292351

STRATIGRAFIA	QU	OTE	LITOLOGIA	Pocket	Vane test	VARIE
	p.c.	parz.			iesi	
14 14 15 15 14 15 15 15	0,7	0,7	Riporto Argilloso con laterizi.			
1 - 77777777	1			2,5	0,7	
	3		Limo argilloso sabbioso plastico	3,1	0,8	
	.]		color nocciola.	3,4	0,85	
2	1			3,3	0,9 0,8	
	3			3,0 2,6	0,8	
~~~~~~				2,0	0,8	
3				3,0	1,0	
				3,1	0,8	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, ,			2,1	0,7	
4				2,0 2,7	0,4 0,6	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				2,7	0,5	
				3,5	0,9	
5	3			3,7	1,2	
*******	5,5	4,8		4,3 3,8	1,3 0,9	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1,0	Limo sabbioso argilloso plastico	2,9	0,5	
6	.1		color nocciola.	2,5	0,4	
				2,6 2,2	0,4 0,3	
**************************************				2,5	0,6	
7	3			2,7	0,4	
7,7,7,7,7,7	4	2.0		2,0	0,2	
	7,5	2,0	Limo argilloso plastico color bruno (paleo- suolo.	1,5 2,1	0,1 0,1	
8 - 777777777	7,8	0,8	Limo sabbioso argilloso plastico.	2,1	0,1	
	8,0	0,2	Limo argilloso plastico color bruno (paleo-	2,3	0,3	
	0,2	0,2	suolo.	2,5	0,5	
	1		Limo sabbioso argilloso plastico color nocciola.	3,0	0,6	
9 - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.1		COIOI TIOCCIOIA.	2,9	0,8	Campione1
77.77.77.77.77	.1					da m. 9,0 a m. 9,50
	1			2,3	0,3	3 0,00
10	4			2,3	0,2	

OSSERVAZIONI: foro strumentato per D.H.- cementazione del 6.10.2017- Nessuna manifestazione idrica

Rp = resistenza penetrometrica Rs = resistenza scissometrica

C = campioni prelevati

H = manifestazioni idriche

continua

# STUDIO DI GEOLOGIA

COMUNE: PETRIOLO

LOCALITA': PLESSO SCOLASTICO

COMMITTENTE : Amministrazione comunale

Sondaggio

1 DH

05/10/2017

Via G.B. Velluti 118 Macerata tel 0733/292351

STRATIGRAFIA	QU	OTE	LITOLOGIA	Pocket		VARIE
STRATIGRAFIA	p.c.	parz.	LITOLOGIA		test	VAINE
11			Limo sabbioso argilloso plastico color nocciola.	2,1 2,2 1,7 1,7 1,7 2,6 2.5	0,2 0,2 0,1 0,2 0,2 0,4 0,5	
12	12,2	4,0	Limo sabbioso argilloso - limo argilloso sabbioso plastico color nocciola.			
13	~			2,0 1,7 2,0 2,7 3,5	0,2 0,2 0,4 0,6 0,8 0,5	
14				3,0 2,3 1,8 2,5	0,2 0,2 0,2	
16	~			1,8 2,2 2,2 2,2 2,4 2,2	0,3 0,2 0,2 0,2 0,2 0,3	
17	~			2,4 2,3 2,6 2,7 4,3 3,8	0,4 0,5 0,6 0,9 1,8	
18	~			4,5 4,5 5,0 5,0	1,4 1,6 1,6 1,5 1,5	
20	~			5,0 5,5 5,8 >6,0	1,9 1,9 1,0 >2,0	

OSSERVAZIONI: foro strumentato per D.H.- cementazione del 6.10.2017- Nessuna manifestazione idrica

Rp = resistenza penetrometrica

Rs = resistenza scissometrica

C = campioni prelevati H = manifestazioni idriche

continua

# STUDIO DI GEOLOGIA

COMUNE: PETRIOLO

LOCALITA': PLESSO SCOLASTICO

COMMITTENTE : Amministrazione comunale

Sondaggio

1 DH

05/10/2017

Via G.B. Velluti 118 Macerata tel 0733/292351

VIA G.B. VCIIdti 1	TO Macci	ata tor c	77 33/23233 1	Comunate			
STRATIGRAFI	Α	JOTE		LITOLOGIA	Pocket	Vane test	VARIE
	p.c.	parz.					
			Limo arg	gilloso sabbioso poco plastico cciola.	4,5	>2,0	Campione2 da m. 20 a m. 20,6 consegnato
21 7	~~~~1						
					5,8 >6,0 5,3	>2,0 >2,0 >2,0	
22 -~~~~~	~~~				5,5	>2,0 >2,0	- 1
					5,5 5,8 5,8	>2,0 >2,0 >2,0	
23 - ~~~~~~~	~~~~				>6,0	>2,0	- 1
					5,1 6,0 >6,0	>2,0 >2,0 >2,0	
24					>6,0	>2,0	
25					>6,0	>2,0	
26					>6,0	>2,0	).
	~ ~ ^				>6,0	>2,0	
28					>6,0	>2,0	
29	<del>~~~</del> 29, ~~~ ~~~	0 16,8		limosa sabbiosa giallognola			
30			(Gluvioi	110)			

OSSERVAZIONI: foro strumentato per D.H.- cementazione del 6.10.2017- Nessuna manifestazione idrica

Rp = resistenza penetrometrica Rs = resistenza scissometrica C = campioni prelevati H = manifestazioni idriche

continua

# STUDIO DI GEOLOGIA

**COMUNE: PETRIOLO** 

LOCALITA': PLESSO SCOLASTICO

Sondaggio

Via G.B. Velluti 118 Macerata tel 0733/292351

COMMITTENTE: Amministrazione comunale

STRATIGRAFIA	QU	ЭТЕ	LITOLOGIA	Pocket	Vane test	VARIE
31	p.c.	parz.	Argilla limosa sabbiosa giallognola (eluvione)			
33	32,5	3,5	Alternanze di sabbie e argille marnose con debole stratificazione - struttura a luoghi brecciata (bed-rock)			
35	36					
37						
39						

OSSERVAZIONI: foro strumentato per D.H.- cementazione del 6.10.2017- Nessuna manifestazione idrica

Rp = resistenza penetrometrica Rs = resistenza scissometrica

C = campioni prelevati H = manifestazioni idriche





## Prova Down-Hole

#### Comune di Petriolo

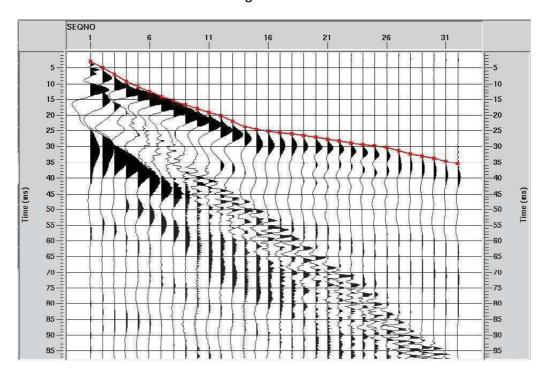
#### Istituto per l'Ambiente Marino Costiero (IAMC-CNR)

Dr. Vincenzo DI FIORE

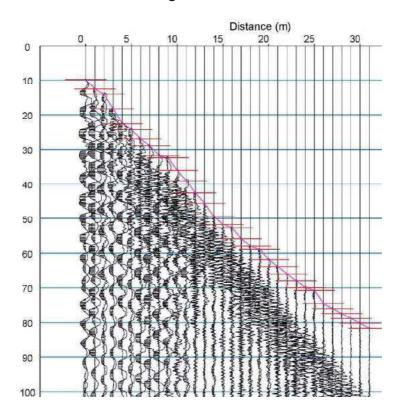
Dr. Giuseppe CAVUOTO

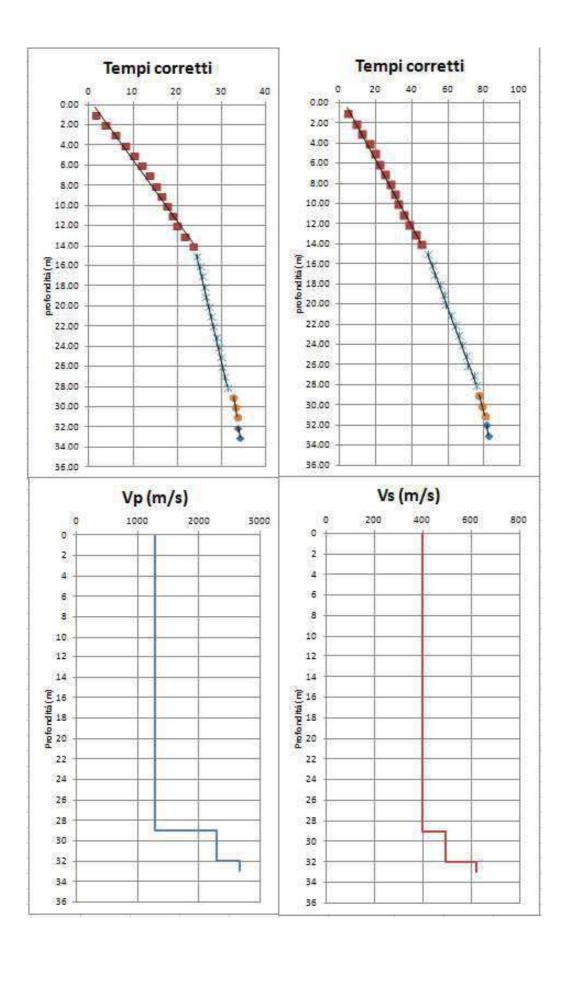
Dr. Michele PUNZO

Dr. Daniela TARALLO


Dr. Nicola PELOSI

Paolo SCOTTO di VETTIMO


Michele IAVARONE


Dr. Rodolfo BACULO

#### Sismogrammi onde P



#### Sismogrammi onde S





Sito: Petriolo

Profondità	Vp [m/s]
[m]	
0.0 - 29.0	1272
29.0 – 32.0	2292
32.0 – 33.0	2660
Profondità	Vs [m/s]
[m]	
0.0 - 29.0	396
29.0 – 32.0	491
32.0 – 33.0	621

#### **SCHEDA DH**

Macroarea	Marche 2					
Località	Petriolo					
Data di acquisizione	Novemb	re 2017				
Coordinate Geografiche	Lat.	43° 13'18.29" N				
Coordinate Geografiche	Long.	13° 28'3.53" E				
Sondaggio						
Profondità foro (m)	36.00					
Strumentazione						
Sismografo	Geometr	ics-Geode				
Sensori	n. 2 geofoni 3D a distanza di 1 m a 10 Hz					
Sistema orientazione	Aste in alluminio					
Sorgente	Massa Battente 5 Kg					
Piastra (componente verticale)	Alluminio	o rinforzato 30cmX30cm				
Piastra (componente orizzontale)	Alluminio rinforzato 30cmX20cm					
Parametri acquisizione						
Intervallo Campinamento (ms)	0.250					
Finestra temporale (s)	1.0					
Numero Campioni acquisiti	4000					
Distanza dal boccapozzo (m)	2					
Prima misura (m)	1.0					
Ultima Misura (m)	33.0					



Foto - Sito durante l'esecuzione della prova



Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

Committente Centro MS
Indagine Petriolo
Sondaggio S1
Campione C1
Profondità 20 00 = 20 0

 Profondità
 20.00 ÷ 20.60 m

 Data apertura
 06/11/2017

 Operatore
 Alfredo Ponzo

Diametro (mm):	85
Lunghezza (mm):	600
Data di apertura:	06/11/2017

	Indisturbato	X
Stato del Campione	Parzialmente Rimaneggiato	
	Rimaneggiato	

<b>Descrizione:</b> Limo argilloso-sabbioso. Parte superiore, circa 10cm, rimaneggiata										
Colore		Avana								
Plasticità		Non Plastico		Bassa	x	Media		Elevata		
Addensamento (Terreni granulari)		Molto sciolto (D _r =0.0÷0.2)		Sciolto (D _r =0.2÷0.4)		Medio (D _r =0.4÷0.6)		Denso (D _r =0.6÷0.8)	Molto denso (D _r =0.8÷1.0)	
Consistenza (Terreni coesivi)		Molto molle $(I_c < 0.0)$		Molle (I _c =0.0÷0.5)	х	Media (I _c =0.5÷1.0)		Consistente (I _c >1.0)	Molto consist. (I _c >>1.0)	
Grado di umidità		Asciutto		Poco Umido	x	Umido		Molto Umido		
Alterazione	X	Assente		Debole		Media		Elevata		
Struttura	X	Omogenea		Stratificata		Scagliosa		Laminata	□ Caotica	
Fratturazione	X	Assente		Moderata		Elevata				
Cementazione	X	Assente		Debole	-	Media		Elevata		

Proprietà fisiche			Proprietà meccanio	che
n,γ,w X			Compressione uniassiale	
Analisi granulometrica X	10.		TX –UU	
Limiti			TX-CIU	
CaCO ₃			TX-CID	
Sostanze organiche	PE	TRIOLO	Compressione edometrica	
Peso specifico del solido	20	0.00÷20.60m	Taglio anulare	
Proctor			Taglio diretto	
CBR			RC TS	X
Altro			Altro	
		1 100	Pocket: parte centrale > 5 kg/	cm ²



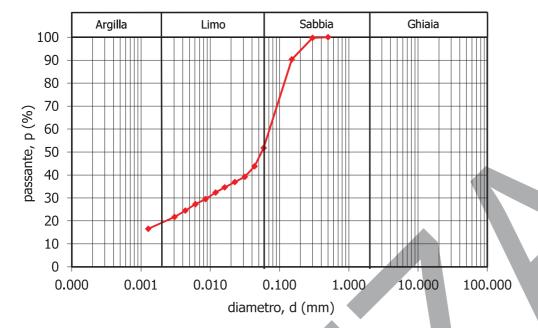
Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

 Committente
 Centro MS

 Indagine
 Petriolo

 Sondaggio
 S1


 Campione
 C1

<u>Profondità</u>

Operatore

Data apertura

20.00 ÷ 20.60 m 06/11/2017 Alfredo Ponzo



CURVA								
GRANULO	METRICA							
d	Passante							
(mm)	(%)							
0.50	100.00							
0.30	99.70							
0.15	90.38							
0.059	51.78							
0.044	43.77							
0.032	39.19							
0.023	36.91							
0.016	34.62							
0.012	32.33							
0.009	29.47							
0.006	27.26							
0.004	24.48							
0.003	21.69							
0.001	16.54							

<u>Terreno</u>: SABBIA CON LIMO ARGILLOSO

	STACCIATU	STACCIATURA SEDIMENTAZIONE						
d (mm)	Peso trattenuto (gr)	Peso passante (gr)	Tempo (min)	Temperatura (°C)	Lettura areometro (gr/cmc)			
0.50	0.00	69.42	0.5	21.00	1.02400			
0.3	0.21	69.21	1	21.00	1.02050			
0.15	6.47	62.74	2	21.00	1.01850			
			4	21.00	1.01750			
			8	21.00	1.01650			
			15	21.00	1.01550			
			30	21.00	1.01425			
			60	21.25	1.01325			
			120	21.50	1.01200			
			240	23.50	1.01050			
			1440	23.50	1.00825			

<b>—</b>	
	I

 $G_S=2.700$ 

Sondaggio	Campione	Profondità (m)	Peso secco totale (gr)	Metodo di preparazione	% < 0.075 mm	% ciottoli	% ghiaia	% sabbia	% limo	% argilla	Peso secco per sedimentazione	$\mathrm{D}_{\mathrm{max}}$ (mm)	D ₆₀ (mm)	$D_{30}$ (mm)	$\begin{array}{c} D_{10} \\ (mm) \end{array}$
S1	C1	20,00- 20,60	69.42	A secco	60	0	0	48	34	18	69.42	0.5	0.075	0.009	-

Normativa di riferimento ASTM 422/90



Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

 Committente
 Centro MS

 Indagine
 Petriolo

 Sondaggio
 S1

 Campione
 C1

 Profondità
 20.00 ÷ 20.60 m

 Data apertura
 6/11/2017

 Operatore
 Alfredo Ponzo

#### Peso specifico del solido

Determinazione con picnometro						
Picnometro n°						
Peso picnometro, P _p (g)	42.55					
Peso picnometro + acqua, P _{pw} (g)	140.30					
Volume picnometro, $V_p$ (cm ³ ) = $(P_{pw} - P_p)/\gamma_w$	97.75					
Peso picnometro + terreno, P _{ps} (g)	64.36					
Peso terreno, $P_s(g) = P_{ps} - P_p$	21.81					
Peso picnometro + terreno + acqua, P _{psw} (g)	154.03					
Volume acqua aggiunta, $V_w$ (cm ³ ) = $(P_{psw}-P_{ps})/\gamma_w$	89.67					
Volume terreno, $V_s$ (cm ³ ) = $V_p$ - $V_w$	8.080					
Peso specifico terreno, $\gamma_s$ (g/cm ³ ) = $P_s/V_s$	2.699					

#### Caratteristiche fisiche generali

	Provino 1	Provino 2	Provino 3	Valore medio
Contenitore n°				
Peso contenitore, Pc (g)	15.15			
D (mm), H (mm)	55.80, 19.82			
Volume, $V \text{ (cm}^3) = \frac{\pi D^2}{4} H$	48.44			
Peso lordo umido, <b>Pu</b> (g)	121.77			
Peso lordo secco, <b>Ps</b> (g)	107.82			
Contenuto d'acqua, $\mathbf{w} = \frac{P\mathbf{u} - P\mathbf{s}}{P\mathbf{s} - P\mathbf{c}}$	0.15			
Peso umido unità di volume, $\gamma$ (kN/m ³ ) = $\frac{Pu - Pc}{V}$	21.58			
Peso secco unità di volume, $\gamma_d$ (kN/m ³ ) = $\frac{Ps - Pc}{V}$	18.76			
Peso specifico del solido, γ _s (kN/m ³ )	26.47			
Porosità, $\mathbf{n} = 1 - \frac{\gamma_d}{\gamma_s}$	0.29			
Indice dei vuoti, $e = \frac{\gamma_s}{\gamma_d} - 1$	0.41			
Grado di saturazione, $S = \frac{\gamma_s}{\gamma_w} \frac{w}{e}$	0.99			

#### Consistenza terreno a grana fine

Limite di liquidità, w _L	0.267
Indice di plasticità, I _P = w _L -w _P	0.109
Indice di consistenza, $I_c = \frac{w_L - w}{I_p}$	1.094

#### Compattezza terreno a grana grossa

Densità minima, e _{max}	/
Densità massima, e _{min}	/
Densità relativa, $\mathbf{D_r} = \frac{\mathbf{e_{max}} - \mathbf{e}}{\mathbf{e_{max}} - \mathbf{e_{min}}}$	/



Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

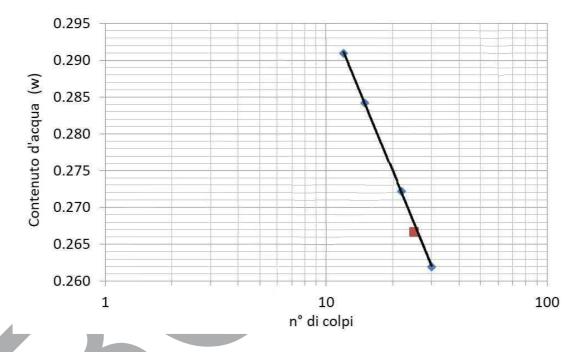
 Committente
 Centro MS

 Indagine
 Belmonte Piceno

 Sondaggio
 S1

 Campione
 C1

 Profondità
 3.00 ÷ 3.50 m


 Data apertura
 26/09/2017

 Operatore
 Alfredo Ponzo

#### Limite di Liquidità

#### Metodo di Casagrande (ASTM)

Contenitore n°	Numero di colpi, N	Peso contenitore, Pc (g)	Peso lordo umido, Pu	Peso lordo secco, Ps	Contenuto d'acqua $w = \frac{Pu - Ps}{Ps - Pc}$
20	12	8.81	42.49	34.9	0.291
110	15	10.37	44.53	36.97	0.284
159	22	11.92	43.33	36.61	0.272
194	30	11.21	42.96	36.37	0.262
	•	Limite di	0.267		



#### Limite di Plasticità

Contenitore n°	Peso contenitore, P _c (g)	Peso lordo umido, P _u (g)  36.48	Peso lordo secco, P _s (g)  33.15	Contenuto d'acqua, $w = \frac{Pu - Ps}{Ps - Pc}$ $0.158$
53	11.86	31.86	29.15	0.157
		Limite di plasticità,	<b>w</b> _P (valore medio)	0.158

Indice di plasticità, $I_P = w_L - w_P$	0.109
Frazione argillosa (d < 2 μm), <b>CF</b>	0.200
Indice di attività, $I_A = I_P/CF$	0.546

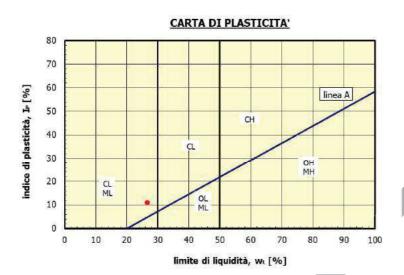


Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

 Committente
 Centro MS

 Indagine
 Belmonte Piceno


 Sondaggio
 S1

CampioneC1Profondità3.00 ÷ 3.50 m

Profondita
3.00 ÷ 3.50 m
Data apertura
Operatore

3.00 ÷ 3.50 m
26/09/2017
Alfredo Ponzo

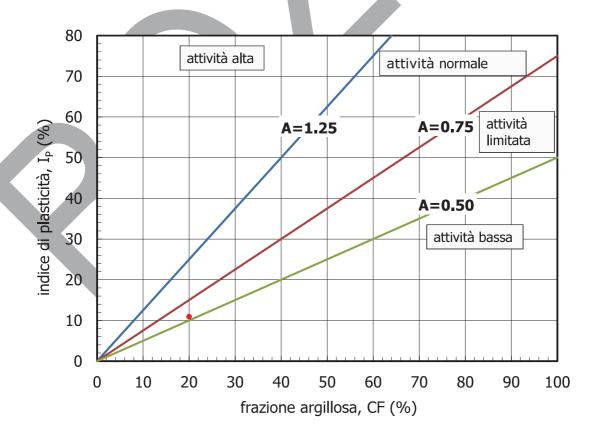
#### Carta di plasticità



#### **Classifica USCS**

ML	Limi inorganici da bassa a media plasticità
CL	Argille inorganiche da bassa a media plasticità
OL	Limi e argille organiche di bassa plasticità
MH	Limi inorganici di alta plasticità
СН	Argille inorganiche di alta plasticità
ОН	Argille organiche da media ad alta plasticità

M = limi


C = argille

O = sostanze organiche

L = bassa plasticità

H = alta plasticità

#### Carta di attività





# Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente
Indagine
Sondaggio
Campione
Profondità

Centro MS Petriolo S1 C1

 Profondità
 20.00 ÷ 20.60 m

 Data apertura
 06/11/2017

 Operatore
 Alfredo Ponzo

#### Prova di colonna risonante e torsione ciclica

	Dati iniziali							
D (mm)	H (mm)	V (cm ³ )	$\gamma$ (kN/m ³ )	w (%)	$\frac{\gamma_s}{(kN/m^3)}$	e (/)	S _r (%)	p' (kPa)
35.29	72.00	70.39	21.70	15.2	18.84	0.405	100	250

	Dati fine consolidazione							
D (mm)	H (mm)	V (cm ³ )	$\frac{\gamma}{(kN/m^3)}$	W (%)	$\frac{\gamma_d}{(kN/m^3)}$	e (/)	S _r (%)	p' (kPa)
35.00	71.90	69.15	21.98	14.6	19.18	0.38	100	250

	Prova dí colonna risonante						
γ (%)	G (MPa)	D _{hp} (%)	D _{rf} (%)	f _r (Hz)	G/G _o (/)		
0.000585	218.50	1.86	1.52	36.5	1.00		
0.000585	218.50	1.85	1.52	36.5	1.00		
0.000877	219.69	1.77	1.51	36.6	1.01		
0.001400	217.30	1.79	1.53	36.4	0.99		
0.002060	216.11	1.82	1.57	36.3	0.99		
0.002960	213.73	1.85	1.65	36.1	0.98		
0.004160	211.37	1.92	1.78	35.9	0.97		
0.005810	205.52	2.01	1.96	35.4	0.94		
0.007900	199.76	2.17	2.22	34.9	0.91		
0.010700	190.71	2.47	2.58	34.1	0.87		
0.014300	180.77	2.80	3.00	33.2	0.83		
0.018200	170.05	3.21	3.77	32.2	0.78		
0.025700	151.57	4.12	4.51	30.4	0.69		
0.033400	132.28	4.72	5.90	28.4	0.61		
0.045600	118.68	5.14	7.18	26.9	0.54		
0.067400	96.84	6.81	8.95	24.3	0.44		
0.090600	80.94	13.20	23.50	15.8	0.37		
0.266000	19.84	16.80	24.90	11	0.09		



Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

Committente
Indagine
Sondaggio
Campione
Profondità

Centro MS Petriolo S1 C1

 Profondità
 20.00 ÷ 20.60 m

 Data apertura
 06/11/2017

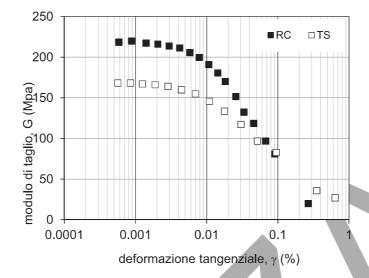
 Operatore
 Alfredo Ponzo

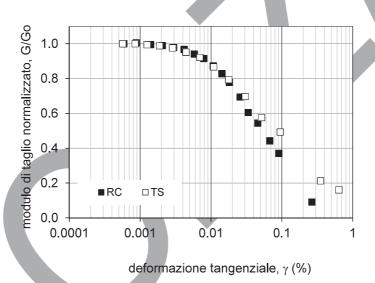
	Pr	ova di torsione ciclica		
γ (%)	G (MPa)	D (%)	$egin{aligned} f_{\mathrm{r}} \ (\mathrm{Hz}) \end{aligned}$	G/G _o (/)
0.00056275	168.20	0.74	0.5	1.00
0.00084776	168.20	0.99	0.5	1.00
0.00125000	167.18	1.13	0.5	0.99
0.00188000	166.16	0.92	0.5	0.99
0.00286000	164.12	1.19	0.5	0.98
0.00440000	160.04	1.41	0.5	0.95
0.00443000	160.04	1.49	0.5	0.95
0.00695000	154.94	1.80	0.5	0.92
0.01089000	145.77	2.56	0.5	0.87
0.01773000	133.54	3.75	0.5	0.79
0.03031000	117.23	5.64	0.5	0.70
0.05167000	96.85	7.81	0.5	0.58
0.09469000	82.87	10,61	2.5	0.49
0.35088000	35.75	15.87	3.5	0.21
0.63766000	26.95	19.48	4.5	0.16

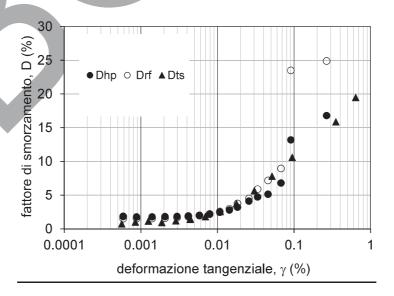


Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica


Committente
Indagine
Sondaggio
Campione
Profondità
Data apertura


Operatore


S1 C1 20.00 ÷ 20.60 m 06/11/2017 Alfredo Ponzo

Centro MS

Petriolo









Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

 Committente
 Centro MS

 Indagine
 Petriolo

 Sondaggio
 S1

 Campione
 C1

 $\begin{array}{ll} \underline{\text{Profonditå}} & 20.00 \div 20.60 \text{ m} \\ \underline{\text{Data apertura}} & 06/11/2017 \\ \underline{\text{Operatore}} & \text{Alfredo Ponzo} \end{array}$ 

#### **APPENDICE**

#### 1. L'attrezzatura sperimentale per prove di taglio torsionale

L'apparecchiatura utilizzata è la cella di taglio torsionale THOR (Figura A.1), progettata e realizzata presso l'Università di Napoli Federico II (d'Onofrio, 1996) sulla base del prototipo originario di colonna risonante 'fixed-free' messo a punto presso l'Università del Texas di Austin (Isenhower, 1979; Ni, 1987). Le caratteristiche tecniche dell'apparecchiatura sono dettagliate da d'Onofrio et al. (1999). In Tabella A.1 sono sintetizzate le principali caratteristiche del sistema, ed in Figura A.2 uno schema della catena strumentale per il controllo e l'acquisizione.

Tipo di prova		Colonna risonante / Taglio torsionale
Nome dell'appared	cchiatura	THOR
	Diametro esterno	36mm
	Altezza	72mm
	Accuratezza nella misura delle dimensioni e del peso del provino	0.1 mm, 0.1gr
Provino	Metodo di preparazione del provino	Fustellamento
	Saturazione	In cella via back-pressure
	Test di B	B > 0.95 mediando i valori ottenuti incrementando e decrementando la pressione di cella
	Contatto tra provino e apparecchiatura	Piastra rugosa avvitata nella testa di carico e pietra porosa di carburo di silicio avvitata al piedistallo
Sistema di applicazione dei carichi torcenti	Tipo	Motore elettromagnetico
Accuratezza del	Pressione di cella	40 Pa attraverso convertitore E/P
	Contropressione	Senza controllo
sistema di controllo	Sistema di applicazione dei carichi torcenti	Controllo in corrente risoluzione 1.6*10 ⁻⁵ Nm (2 Pa per il provino Ø 36 mm) Fondo scala 5 Nm Non c'è effetto della forza elettromotrice indotta
	Pressione di cella	Sensore di pressione di elevate prestazioni con membrana al silicone
	Contropressione	Trasduttore miniaturizzato con diaframma al silicone
T: 1:	Pressione neutra	Trasduttore miniaturizzato con diaframma al silicone
Tipo di trasduttori	Coppia torcente	Cella torsionale a strain-gage
utilizzati	Spostamenti assiali	LVDT in corrente continua
diffizzati	Variazioni di volume	Trasduttore differenziale di pressione/ volumometro
	Accelerazioni	Accelerometro piezoelettrico
	Rotazioni	Laser /Proximitor
	Pressione di cella	1.5 Pa
	Contropressione	0.7 Pa
Accuratezza delle	Pressione interstiziale	0.7 Pa
misure	Coppia torcente	6x10 ⁻³ Nm
	Spostamenti assiali	1 μm
	Variazioni di volume	$0.0014 \text{ cm}^3$
	Rotazioni	2. 5x10 ⁻⁷ rad (prox)

Tabella A.1. Principali caratteristiche della cella di taglio torsionale THOR.

Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

 Committente
 Centro MS

 Indagine
 Petriolo

 Sondaggio
 S1

 Campione
 C1

 Profondità
 20.00 ÷ 20.60 m

 Profondità
 20.00 ÷ 20.60 m

 Data apertura
 06/11/2017

 Operatore
 Alfredo Ponzo




Figura A.1. l'apparecchiatura di taglio torsionale THOR.

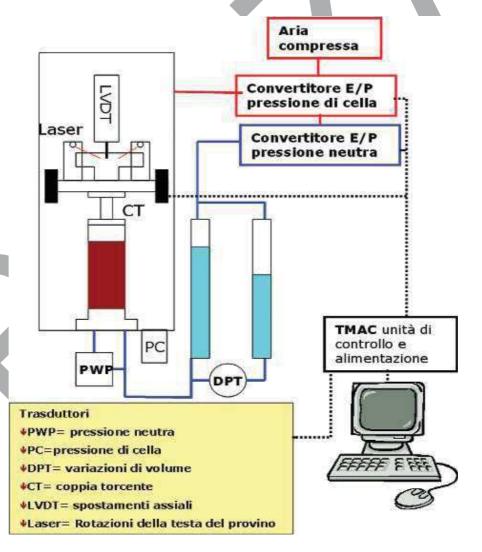



Figura A.2. Diagramma schematico del sistema di controllo e acquisizione di THOR



Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

 Committente Indagine
 Centro MS

 Sondaggio
 S1

 Campione
 C1

 $\begin{array}{ll} \underline{\text{Profondit\`a}} & 20.00 \div 20.60 \text{ m} \\ \underline{\text{Data apertura}} & 06/11/2017 \\ \underline{\text{Operatore}} & \text{Alfredo Ponzo} \end{array}$ 

#### 2. Procedure sperimentali per le prove RC e CTS

Ciascun provino è stato sottoposto ad una prima fase di applicazione della sollecitazione sferica per ricondurre il provino alla tensione efficace stimata agente in sito.

Al termine di questa fase è stato poi applicato il carico torsionale M(t), avente caratteristiche diverse in funzione del tipo di prova. In particolare, in relazione alla frequenza con la quale vengono fatte variare le sollecitazioni nel tempo, è possibile distinguere due tipi di prova: prove «cicliche» (torsione ciclica, CTS) e prove «dinamiche» propriamente dette (colonna risonante, RC).

I criteri di interpretazione delle prove in termini di rigidezza e smorzamento sono variabili a seconda delle caratteristiche della sollecitazione torsionale applicata. Infatti, nelle prove TS l'effetto delle forze di inerzia è trascurabile e quindi l'interpretazione è di tipo «quasi statico», mentre per le prove RC è necessario fare riferimento a modelli d'analisi dinamici. I criteri descritti in seguito sono quelli pressoché universalmente adottati per l'interpretazione delle prove RC e CTS, conformi alle norme ASTM (ASTM D4015/92). Presso il DIGA sono state messe a punto, è vengono normalmente utilizzate, procedure di interpretazione più complesse, che si avvalgono della completa automazione e digitalizzazione delle prove. Queste procedure, ampiamente descritte altrove (Papa et al., 1988; Silvestri, 1991, d'Onofrio, 1996), tra l'altro consentono di aumentare l'affidabilità dei risultati anche quando il livello di deformazioni indagato è basso e quindi si è in presenza di un rapporto segnale/rumore non elevato. Per approfondimenti si rimanda a Silvestri (1991).

#### 2.1 Prove di colonna risonante (RC)

Durante una prova di colonna risonante (Figura A.3) il provino è sottoposto ad una sollecitazione torsionale di ampiezza M costante e frequenza f variabile nel tempo:

$$M(t) = M \sin[2\pi ft]$$

Nell'attrezzatura utilizzata, l'estremità superiore del provino è libera, mentre la base è rigidamente vincolata al piedistallo fisso; in tal modo lo schema dinamico di riferimento è del tipo «a base fissa» o «fixed-free» (Woods, 1978).

Durante la prova, viene registrata la vibrazione della testa del provino in termini di rotazione,  $\theta$ , rilevata a seconda dei casi da una coppia di sensori laser oppure da due coppie di trasduttori di prossimità. Tale misura viene convertita in deformazioni tangenziali,  $\gamma$ , mediante le opportune costanti di taratura (d'Onofrio, 1996). La risposta del provino risulta in ogni istante isofrequenziale con la sollecitazione, mentre l'ampiezza ( $\theta$  o  $\gamma$ ) varia in relazione alla frequenza, ed attinge il valore massimo quando vengono raggiunte le cosiddette "condizioni di risonanza" ( $f = f_R$ ).

Il modulo tangenziale G viene dedotto dalla misura della velocità delle onde di taglio,  $V_S$ , ottenuta analizzando la risposta del sistema composto da provino e dispositivo di carico torsionale, sulla base di classici modelli teorici di vibrazione torsionale di solidi cilindrici (Richart et al, 1970). Dalla conoscenza delle caratteristiche fisico-geometriche del sistema,  $V_S$  e G si ricavano applicando le espressioni:

$$V_s = \frac{2\pi f_r L}{\beta}$$

$$G = \rho V_S^2$$

dove L indica l'altezza del provino e  $\rho$  la densità del terreno. La costante adimensionale  $\beta$  è funzione dell'inerzia polare di massa del provino, I, e di quella del sistema di eccitazione,  $I_0$ , secondo l'equazione:

$$\frac{I}{I_0} = \beta \tan \beta$$

Dalla curva di risposta è possibile anche ricavare il fattore di smorzamento D, individuando i valori di frequenza  $(f_1, f_2)$  corrispondenti ad un'ampiezza di vibrazione pari a  $\gamma_{max}/\sqrt{2}$  (metodo della "semibanda di potenza"):

$$D_{hp} = \frac{f_2 - f_1}{2 f_R}$$

A causa della non linearità e della degradazione ciclica, questo criterio non sempre fornisce una valutazione attendibile del fattore di smorzamento D. In casi del genere si può, in alternativa, ricorrere al metodo basato sull'espressione analitica del



Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

Committente<br/>IndagineCentro MSSondaggioS1CampioneC1

 $\begin{array}{ll} \underline{\text{Profondit\`a}} & 20.00 \div 20.60 \text{ m} \\ \underline{\text{Data apertura}} & 06/11/2017 \\ \underline{\text{Operatore}} & \text{Alfredo Ponzo} \end{array}$ 

fattore di risonanza (metodo del fattore di risonanza), cioè il rapporto tra il valore di picco,  $\gamma_{max}$ , della curva di risposta  $\gamma(f)$  e la rotazione statica corrispondente ad una coppia di eguale ampiezza M. Da esso si ricava D, una volta noti le ampiezze M e  $\gamma_{max}$ , ed il valore di G già calcolato, con l'espressione seguente:

$$D_{rf} = \frac{M_0 \overline{R}}{2G \gamma_{max}}$$

Questo metodo appare in genere più attendibile di quello precedente, perché meno sensibile agli effetti della non linearità e della degradazione ciclica del terreno.

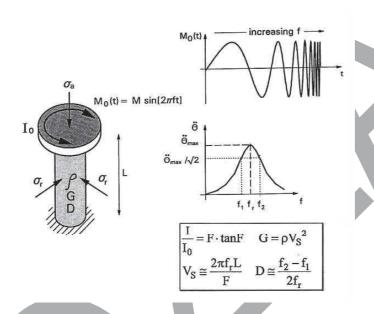



Figura A.3: Interpretazione delle prove di colonna risonante.



Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

 Committente
 Centro MS

 Indagine
 Petriolo

 Sondaggio
 S1

 Campione
 C1

 $\begin{array}{ll} \underline{\text{Profondit\`a}} & 20.00 \div 20.60 \text{ m} \\ \underline{\text{Data apertura}} & 06/11/2017 \\ \underline{\text{Operatore}} & \text{Alfredo Ponzo} \end{array}$ 

#### 2.2 Prova di torsione ciclica (CTS)

Durante una prova di torsione ciclica (Figura A.4), il provino viene sottoposto ad un momento torcente M(t) variabile nel tempo con legge sinusoidale (di ampiezza e frequenza costanti) e si misura la rotazione della testa  $\theta(t)$ .

Le tracce temporali rappresentative di momenti e rotazioni vengono tradotte in termini di andamenti  $\tau(t)$  e  $\gamma(t)$ , mediante le opportune costanti di taratura ed assumendo alcune ipotesi semplificative sulla distribuzione dello stato tensio-deformativo all'interno del provino.

Per ciascun ciclo di carico si individuano quindi i valori di picco della tensione e della deformazione tangenziali ( $\tau_{max}$  e  $\gamma_{max}$ ), e l'andamento del ciclo di isteresi risultante dall'accoppiamento di  $\tau(t)$  e  $\gamma(t)$ .

I valori di G e D vengono calcolati utilizzando le relazioni:

$$G = \frac{\tau_{pp}}{\gamma_{pp}} \qquad \qquad D = \frac{W_d}{4\pi W_s}$$

Per l'interpretazione dei risultati relativi alle prove di torsione ciclica si è attribuita maggiore affidabilità a tecniche di regressione statistica ai bassi livelli di deformazione (adoperando una regressione sinusoidale, cfr. Papa et al., 1988); non appena i disturbi elettrici sono apparsi senz'altro trascurabili, si è ricorsi ai criteri ordinari (ampiezze picco-picco, area del ciclo di isteresi).

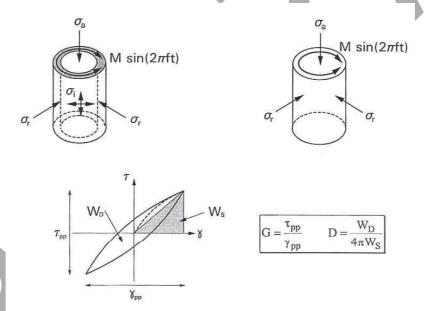



Figura A.4: Interpretazione delle prove di torsione ciclica.



Dipartimento di Ingegneria Civile, Edile ed Ambientale

#### Laboratorio di Geotecnica

 Committente
 Centro MS

 Indagine
 Petriolo

 Sondaggio
 S1

 Campione
 C1

 Profondità
 20.00 ÷ 20.60 m

 Data apertura
 06/11/2017

 Operatore
 Alfredo Ponzo

#### Riferimenti

AGI (1994) - Raccomandazioni sulle prove geotecniche di laboratorio

ASTM D422/90 - Standard Test Method for particle-size analysis of soils.

ASTM D4318 - Standard Test Methods for liquid limit, plastic limit, and plasticity index of Soils.

ASTM D2435/96 - Standard Test Methods for one-dimensional consolidation properties of soils using incremental loading.

ASTM D4015/92 - Standard Test Methods for modulus and damping of soils by Resonant-Column method.

d'Onofrio A. (1996) – Comportamento meccanico dell'argilla di Vallericca in condizioni lontane dalla rottura – Tesi di dottorato in Ingegneria Geotecnica, Università degli Studi di Napoli.

d'Onofrio A., Silvestri F., Vinale F. (1999) - *A new torsional shear device* - ASTM Geotechnical Testing Journal, Vol 22-2 pp.107-117.

Isenhower W.M. (1979) - Torsional Simple Shear/Resonant Column properties of San Francisco Bay Mud - M.S. Thesis, The University of Texas at Austin.

Ni S. H. (1987) Dynamic properties of sand under true triaxial stress states from Resonant Column/Torsional Shear tests - Ph. D. dissertation, The University of Texas at Austin.

Papa V., Silvestri F., Vinale F. (1988) - Recenti sviluppi e prospettive nelle tecniche di interpretazione di prove dinamiche di taglio semplice - Atti del Convegno del Gruppo Nazionale di Coordinamento per gli Studi di Ingegneria Geotecnica, Monselice.

Richart F.E., Hall J.R., Woods R.D. (1970) - *Vibrations of soils and foundations* - Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Silvestri F. (1991) - Analisi del comportamento dei terreni naturali in prove cicliche e dinamiche di taglio torsionale - Tesi di Dottorato in Ingegneria Geotecnica, Università degli Studi di Napoli.

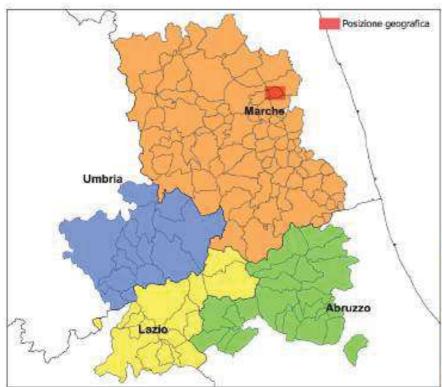
Woods R.D. (1978) - *Measurement of dynamic soil properties* - Proc. "Geotechnical Engineering Division Specialty Conference on Earthquake Engineering and Soil Dynamics", ASCE, Pasadena (California).







#### COMMISSARIO STRAORDINARIO RICOSTRUZIONE SISMA - 2016


Microzonazione Sismica di Livello 3 del Comune di Petriolo ai sensi dell'Ordinanza del Commissario Straordinario n. 24 registrata il 15 maggio 2017 al n. 1065

# MICROZONAZIONE SISMICA

# REPORT MISURAZIONI HVSR COD: , HVSR - 043036P47

# Regione Marche

Comune di Petriolo







Soggetto realizzatore Geol. Fabio Mariani Data e revisione

Dicembre 2017

CENTROMS

CENTRO PER LA

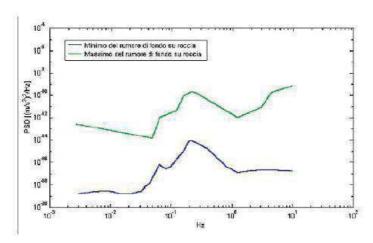
MICROZONAZIONE SISMICA
E LE SUE APPLICAZIONI

#### **PREMESSA**

A seguito dell'incarico ricevuto dal Comune di Petriolo per la MZS del territorio e le indicazioni fornite dal Centro MS che coordina l'intero progetto viene eseguita la presente prova sismica via G. Leopardi, HVSR - 043036P47 è stata eseguita con acquisizioni un' indagine geofisica con misura della frequenza di risonanza del sito finalizzata alla caratterizzazione sismica del sottosuolo.

Allegata alla presente si riporta scheda di campagna con documentazione fotografica e i dati salienti del rilievo eseguito.

La campagna indagine è stata condotta in data 27 settembre 2017.


#### MISURA MICROTREMORE - TECNICA H.V.S.R.

#### INTRODUZIONE

Il rumore sismico, generato dai fenomeni atmosferici (onde oceaniche, vento) e dall'attività antropica, è presente ovunque sulla superficie terreste.

Si chiama anche microtremore poiché riguarda oscillazioni molto più piccole di quelle indotte dai terremoti nel campo prossimo all'epicentro.

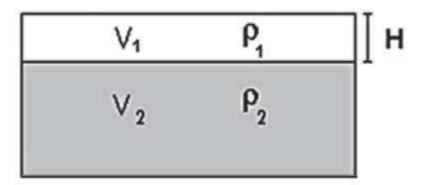
Anche l'attività industriale o il traffico veicolare possono generare tremore sismico, soprattutto in alta frequenza (alcuni Hz), che si attenua rapidamente allontanandosi dalla sorgente. In aree prive di sorgenti locali di tremore, in assenza di vento o su basamenti rocciosi tabulari, lo spettro del tremore assume la forma mostrata in Figura:



dove le curve blu e verdi indicano rispettivamente le ampiezze 'massima' e 'minima' assunte come standard per il rumore sismico di fondo dal Servizio Geologico degli Stati Uniti (USGS).

Lo spettro del rumore sismico diminuisce in corrispondenza delle alte frequenze con delle leggere ondulazioni legate al moto ondoso del Marea Adriatico e/o degli oceani che si propagano a distanze anche dell'ordine delle migliaia di km dalla costa a causa delle particolari modalità di propagazione delle onde superficiali.

I metodi che si basano sulla sua acquisizione si dicono passivi in quanto il rumore non è generato ad hoc, come ad esempio le esplosioni della sismica attiva.


Durante un terremoto, se la frequenza di risonanza del sottosuolo coincide con quella degli edifici presenti, può avere luogo un fenomeno di accoppiamento fra le due modalità di vibrazione.

Questo effetto di amplificazione sismica produrrà un grande aumento della sollecitazione sugli edifici.

L'amplificazione sismica è la prima causa dei danni indotti dal terremoto, anche più importante della dimensione del terremoto stesso.

#### **BASI TEORICHE DEL METODO H/V**

Le basi teoriche dell'H/V sono relativamente semplici in un mezzo del tipo strato + bedrock (o strato assimilabile al bedrock) in cui i parametri sono costanti in ciascuno strato (1-D). Consideriamo il sistema di Figura in cui gli strati 1 e 2 si distinguono per le diverse densità (r1 e r2) e le diverse velocità delle onde sismiche (V1 e V2). Un'onda che viaggia nel mezzo 1 viene (parzialmente) riflessa dall'interfaccia che separa i due strati.



L'onda così riflessa interferisce con quelle incidenti, sommandosi e raggiungendo le ampiezze massime (condizione di risonanza) quando la lunghezza dell'onda incidente (I) è 4 volte (o suoi multipli dispari) lo spessore H del primo strato. La frequenza fondamentale di risonanza (fr) dello strato 1 relativa alle onde S (o P) è pari a:

$$(fr) = Vs1/4H (fr) = Vp1/4H$$
 [1]

I microtremori sono solo in parte costituiti da onde di volume P o S, e in misura molto maggiore da onde superficiali, in particolare da onde di Rayleigh. Tuttavia ci si può ricondurre a risonanza delle onde di volume, poiché le onde di superficie sono prodotte da interferenza costruttiva di queste ultime e poiché la velocità dell'onda di Rayleigh è molto prossima a quella delle onde S.

Questo effetto è sommabile, anche se non in modo lineare e senza una corrispondenza 1:1. Ciò significa che la curva H/V relativa ad un sistema a più strati contiene l'informazione relativa alle frequenze di risonanza (e quindi allo spessore) di ciascuno di essi, ma non è interpretabile semplicemente applicando l'equazione [1].

L'inversione richiede l'analisi delle singole componenti e del rapporto H/V, che fornisce un'importante normalizzazione del segnale per a) il contenuto in frequenza, b) la risposta strumentale e c) l'ampiezza del segnale quando le registrazioni vengono effettuate in momenti con rumore di fondo più o meno alto.

La situazione, nel caso di un suolo reale, è spesso più complessa. Innanzitutto il modello di strato piano al di sopra del bedrock si applica molto raramente. Poi, la velocità aumenta con la profondità, possono esserci eterogeneità laterali importanti ed infine la topografia può non essere piana. L'inversione delle misure di tremore a fini stratigrafici, nei casi reali, sfrutta quindi la tecnica del confronto degli spettri singoli e dei rapporti H/V misurati con quelli 'sintetici', cioè con quelli calcolati relativamente al campo d'onde completo di un modello 3D. L'interpretazione è tanto più soddisfacente, e il modello tanto più vicino alla realtà, quanto più i dati misurati e quelli sintetici sono vicini.

In questo lavoro i segnali sono stati analizzati non solo attraverso i rapporti spettrali H/V ma anche attraverso gli spettri delle singole componenti, e nei casi più significativi, le curve HVSR sono state invertite secondo la procedura descritta da Arai e Tokimatsu (2004).

#### **STRUMENTAZIONE**

Tutte le misure di microtremore ambientale, della durata minima di 10 minuti ciascuna, sono state effettuate con un tromografo digitale progettato specificamente per l'acquisizione del rumore sismico.

Lo strumento (SR04S3 - SARA electronic instruments) è un Sismografo triassiale con geofoni da 4.5 Hz dotato di tre sensori elettrodinamici (velocimetri) orientati N-S, E-W e verticalmente, con banda utile di lettura 0.2 – 100 Hz, alimentato da 1 batteria 12V esterna senza sistema GPS interno.

collegato ad un Notebook ASUS - Int4el i7.

I dati di rumore, amplificati e digitalizzati a 24 bit equivalenti, sono stati acquisiti alla frequenza di campionamento di 128 Hz tramite il software SEISMOLOG-MT della SARA electronic instruments.

I segnali cosi acquisiti, relativi alle componenti Verticale (Z), Est-Ovest (E) e Nord-Sud (N), sono stati successivamente analizzati col software GeoExplorer della Sara, Easy HAVSR della Geostru e Geopsy (Wathelet -SESAME European research project – 2004) e quindi con la routine Dinver per derivare la curva d'inversione delle velocità Vs. delle varie elaborazioni si è tenuta conto della più probabile e quindi relazionata secondo programma GeoExplorer della Sara.

#### **ACQUISIZIONE DATI**

Per l'acquisizione il Geobox SR04S3 viene posizionato sul terreno cercando di ottimizzare al meglio l'accoppiamento terreno strumento, più importante del livellamento.

Nel posizionamento è preferibile posizionare lo strumento con l'asse maggiore in direzione del Nord nelle misure su terreno, mentre per le misure su edifici viene posizionato lungo l'asse principale dell'edificio.

Una volta posizionato lo strumento, come precedentemente detto, si parte con l'acquisizione che ha una durata di circa 20/30 minuti.

#### **COMMENTO**

Esaminando i valori ottenuti si evidenzia un punto F0 di 2.335 Hz ed A0 di 3.171.

L'analisi direzionale risulta di buona qualità in quanto il sito è sempre disturbato da rumori ambientali cittadini come anche l'analisi dei tempi -frequenze I criteri Sesame sono quasi totalmente soddisfatti salvo quelli relativi ad un criterio.

Il modello sintetico è stato realizzato tenendo presente le condizioni geologiche dell'area fornendo un diagramma a 4 strati con substrato sismico posto a profondità maggiore di ml. 36. I risultati ottenuti sono concordi con la stratigrafia rilevata eseguita per la D.H.

Si nota la regolarità di aumento delle velocità VS con l'aumentare della profondità.

I valori ottenuti di Vs30, così come prescritto dalla normativa (modifiche del D.M. 14/09/2005 Norme Tecniche per le Costruzioni, emanate con D.M. Infrastrutture del 14/01/2008, pubblicato su Gazzetta Ufficiale Supplemento ordinario n° 29 del 04/02/2008), con un valore di **Vs30 di 273 m/sec.** 

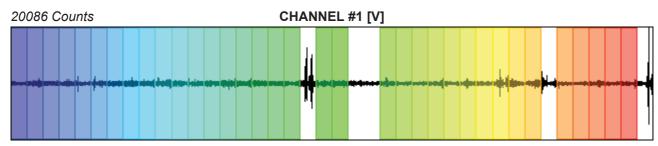
Esaminando la registrazione vediamo che il **picco massimo è a 2.335 Hz**. Questa ricostruzione appare compatibile con il modello geofisico del sottosuolo che attribuisce una profondità del bed-rock geologico a circa 29 metri.

Macerata novembre 2017

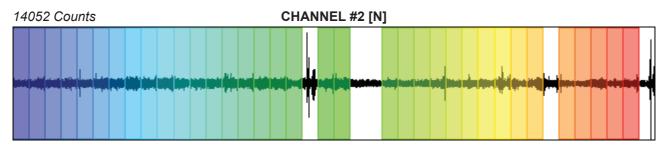
Dott. Geol. Fabio Mariani

#### SIGNAL AND WINDOWING

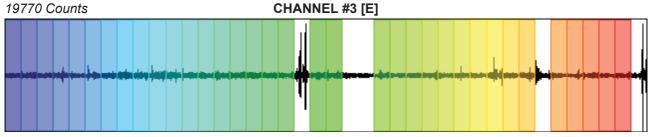
Sampling frequency: 300 Hz


Recording start time: 2017/09/27 17:13:48

Recording length: 20 min


Windows count: 35

Average windows length: 30


Signal coverage: 87.5%



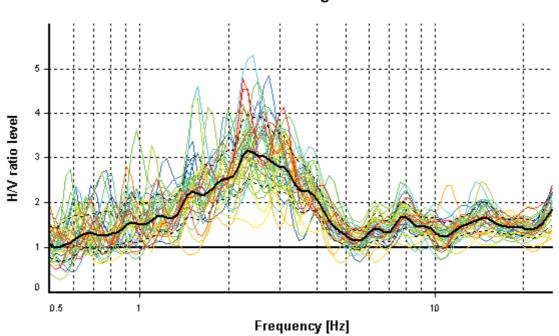
-14732 Counts



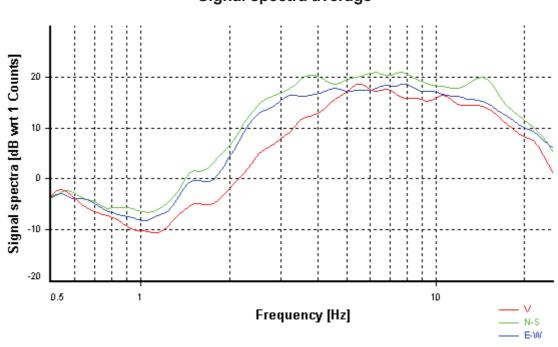
-15441 Counts



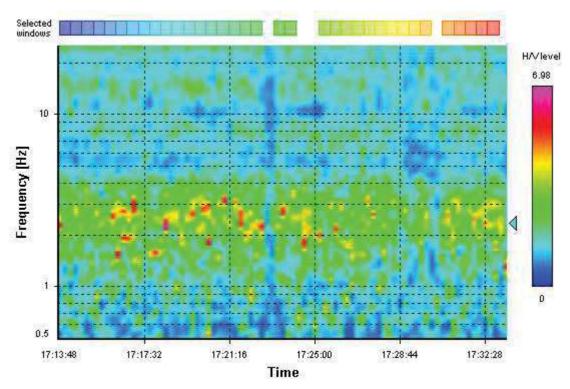
-21175 Counts


#### **HVSR ANALYSIS**

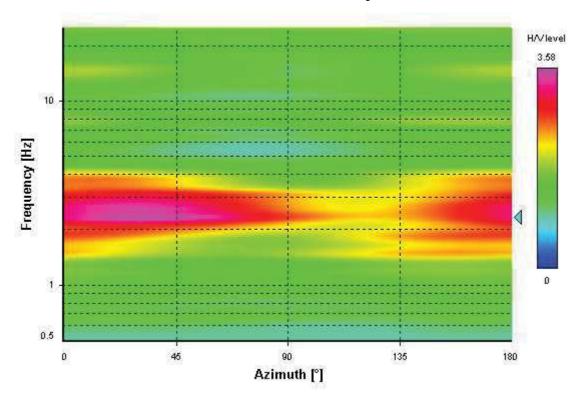
Tapering: Enabled (Bandwidth = 5%)


Smoothing: Konno-Ohmachi (Bandwidth coefficient = 40)

Instrumental correction: Disabled


#### **HVSR** average




#### Signal spectra average

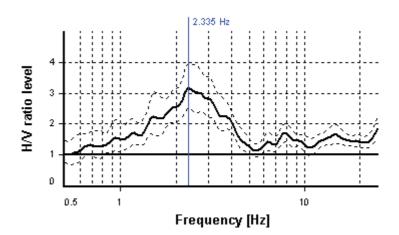


#### **HVSR time-frequency analysis (14 seconds windows)**



#### **HVSR** directional analysis



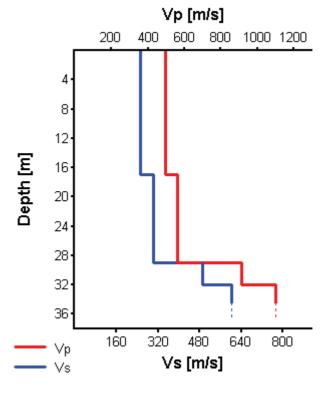

#### **SESAME CRITERIA**

## Selected f₀ frequency

2.335 Hz


 $A_0$  amplitude = 3.171

Average  $f_0 = 2.480 \pm 0.420$ 




f ₀ > 10 / L _w 35 valid windows (length > 4.28 s) out of 35			
n _o (f ₀ ) > 200	2451.61 > 200	OF	
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0$	Exceeded 0 times in 35	OF	
$\exists f^{+} \text{ in } [f_{0}, 4f_{0}] \mid A_{H/V}(f^{+}) < A_{0}/2$	4.57092 Hz	OF	
$\exists f \text{ in } [f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	1.05934 Hz	OI	
$A_0 > 2$	3.17 > 2	OI	
7 NO 7 Z	0% <= 5%	Ol	
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	070 \= 370		
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ $\sigma_{\text{f}} < \epsilon(f_0)$	0.42037 >= 0.11674	NO	

#### Synthetic HVSR modelling



H [m]	D [m]	Vp [m/s]	Vs [m/s]	ρ [kg/m³]
17	17	496	250	1800
12	29	561	300	2000
3	32	917	490	2000
(4)	> 32	1103	600	2200



Vs 30 = 273 m/s (Offset = 0 m)



#### Foglio Campagna acquisizione HVSR

Campagna	HVSR - 043036P47	Data	27.09.2017
Sito	Via G. Leopardi	Operatore	Fabio Mariani
Strumento Acquisitore	GeoBox	Sismometro Tipo	Nakamura
Frequenza Sismometro	4.5 - 0.1 Hz	Fondo scala	600 Hz
Freq. Campionamento	20 Sec	GPS LOC	NO
Inizio Registrazione	17.33	Durata (sec)	1200
NOME FILE	MT_20170927_171348	FORMATO FILE	.saf
	Coor	rdinate	
	GPS	UTM	ALTRO
Latitudine	43°13′18′′ N		
Longitudine	13°28′3′′ E		
Quota (m)	263 m		

Indicazioni sul Sito: (Città, Frazione, via, proprietario, telefono e altri riferimenti per la sua individuazione)

Petriolo, Via G. Leopardi





INSTALLAZIONE SISMOMETRO: ACCOPPIAMENTO				
Roccia	Asfalto	Sabbia	Erba	
Terreno Riporto	X Terreno_compatto	Terreno_bagnato	Terreno_secco	
Cemento	Sterrato	Pavimentazione	Marciapiede	
Modalità Accoppiam	nento Sismometro Terreno:			
(appoggiato, interrato	, cementato) Interrato			



CENTRO PER LA MICROZONAZIONE SISMICA E LE SUE APPLICAZIONI Foglio Campagna acquisizione HVSR LOGO DITTA **INSTALLAZIONE SISMOMETRO: GEOLOGIA** Roccia X Terreno Detrito Riporto altro/commento: .... INSTALLAZIONE SISMOMETRO: POSIZIONAMENTO in Città_via principale Città via secondaria Città cortile Città parco Strada principale X Strada secondaria Mura Mura antiche Galleria Aperta campagna Cunicolo altro/commento: / **INSTALLAZIONE GEOFONO: VICINANZA** Fiume Fabbrica Cantiere Canale Lavori stradali Viadotti Alberi Ponti Mura Gallerie X Fognature X Edifici scarsi Edifici nessuno Edifici densi distanza edificio vicino:6 m numero piani edificio vicino: 1 strutture sotterranee: / **CONDIZIONI ATMOSFERICHE:** vento forte X vento debole no vento pioggia forte pioggia debole X no pioggia altro/commento..... **RUMORE RILEVABILE:** X Auto nessuna Auto poche Auto tante X Mezzi pesanti nessuno Mezzi pesanti pochi Mezzi pesanti tanti X Pedoni nessuno Pedoni pochi Pedoni tanti

ALTRE SORGENTI DI RUMORE

Macchinari industriali in lontananza

# DICHIARAZIONE DI CONFORMITA' e CERTIFICATO DI CONTROLLO QUALITA'

Il fabbricante:SARA electronic instruments s.r.l. Via Mercuri 4 - 06129 PERUGIA – ITALY

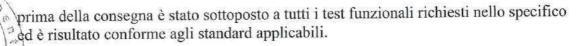
> Codice Fiscale e Partita IVA Nr. IT00380320549 N.Reg.RAEE: IT08020000001128 Telefono +39 075 5051014 – Fax +39 075 5006315 email: info@sara.pg.it URL:www.sara.pg.it

dichiara che lo strumento modello:

Geobox 4,5

nr. di serie:

2192




è stato progettato, prodotto e/o testato secondo le norme armonizzate EU/EN. Fra le quali la: EN-61326-1, EN-61326-2-1, EN-61000-3-2, EN-61000-3-3, EN-61000-4-2, EN-61000-4-3, EN-61000-4-4, EN-61000-4-5, EN-61000-4-6, EN-61000-4-8, EN-61000-4-11, ecc.

Il prodotto è dichiarato dunque conforme alle direttive: 2014/30/EU; se equipaggiato con dispositivo GPS anche secondo la direttiva R&TTE 1999/5 EC con conformità specifica per la radio solo riceventi GPS L1 C/A Code.



Si specifica inoltre che il prodotto è soggetto alla direttiva RAEE e quindi va smaltito appropriatamente.Se necessario richiedere maggiori informazioni al produttore. L'apparecchiatura è conforme alla direttiva ROHS-2011/65/UE



Si raccomanda un controllo e/o calibrazione periodica ogni 2 anni dalla data di rilascio del presente documento.



Il direttore tecnico: Mauro Mariotti,

Data di rilascio 04/10/2017

#### CALIBRATION CERTIFICATE



electronic instruments

SARA electronic instruments s.r.l. Via Mercuri 4, 06129 - PERUGIA - Italy www.sara.pg.it - info@sara.pg.it

Date of calibration:

Instrument type:

Instrument model:

Serial number:

Validity date:

2017/10/05

Velocimeter

PF S SR04 GBX-45-NNG

2192

Manufacturing date:

OTT 2017 2017/10/05

2019/10/05

Channel 1 - Z

Channel 2 - NS

Channel 3 - EW

**TEST CONDITIONS** 

Shaking table:

Voltmeter: Signal digitizer:

Signal generator:

Scope meter:

Last system check:

Temp / Rh:

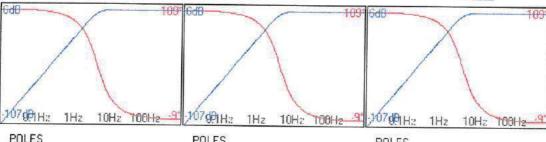
Environmental seismic noise during test

26.7°C	42.7%
SEISMOCAL 1.0.75	
TTI TG101QA	
SR04C3 @ 600 Hz	
AGILENT U1252A	
SARA MK1	

SARA MK1	100 100
AGILENT U1252A	
SR04C3 @ 600 Hz	
TTI TG1010A	
SEISMOCAL 1.0.75	
29,0°C	41.0

41.0%

3E13MOCAL 1.0.73	
SEISMOCAL 1.0.75	
TTI TG101QA	
SR04C3 @ 600 Hz	
AGILENT U1252A	
SARA MK1	


0 C

Output impedance:	4000
Calibration frequency:	10
Calibration displacement:	0
Frequency o.c.:	3.6
Damping o.c.:	0.58
Applied shunt:	90000
Output frequency:	3.4
Eigen frequency:	4.5
Damping:	0.69
Generator constant:	75.01
le 10	

	4000
	10
	C
	3.7
	0.55
	70400
	3.3
W	4.5
	0.69
	72.66

4000	ohm	+/-	5	%
10	Hz	+/-	0.001	Hz
0	mm	+/-	0.002	mm
3.8	Hz	+/-	0.1	Hz
0.54		+/-	5	%
66400	ohm	+/-	1	%
3.4	Hz	+/-	0.1	Hz
4.5	Hz	+/-	0.1	Hz
0.69		+/-	5	%
72.56	V/m/s	+/-	1	%

Bode plot



**POLES** 

1) Re: -19.509; Im: 20.465

2) Re: -19.509; Im: -20.465

ZEROS

1) Re: -19.509; Im: 20.465

2) Re: -19.509; Im: -20.465

NORMALIZATION FACTOR AO

1) Re: -19.509; Im: 20.465

2) Re: -19.509; Im: -20.465

Poles and

Zeros

**ZEROS** 1) Re: 0.000; Im: 0.000

2) Re: 0.000; Im: 0.000

1) Re: 0.000; Im: 0.000 2) Re: 0.000; Im: 0.000 **ZEROS** 

1) Re: 0.000; Im: 0.000 2) Re: 0.000; Im: 0.000

[rad/s]

NORMALIZATION FACTOR AO 9.99572E-01 @ 45 [Hz]

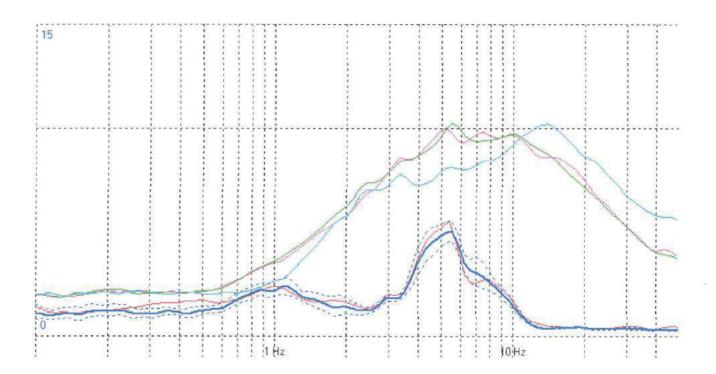
9.99572E-01 @ 45 [Hz] SYSTEM GAIN

NORMALIZATION FACTOR AO 9.99572E-01 @ 45 [Hz]

SYSTEM GAIN 7.25600E+01 V/m/s

SYSTEM GAIN 7.50100E+01 V/m/s 7.26600E+01 V/m/s






#### Test report unità SR04S3 GEOBOX SS45, NO GPS, s/n: 2192 test site lab 05/10/2017 09:30 - VIA SETTEVALLI

convergenza fino a 0.2Hz forma del rapporto H/V attesa : ok : ok

(curva di riferimento in rosso)

picco a 5.47Hz, 7.5Hz, incremento a 1Hz, rapporto < 1 al di sopra di 10Hz fino a 60Hz



spettro verticale:

spettro orizzontale:

lunghezza finestre:

numero di finestre utilizzate:

linea azzurra

linee viola+verde

180 secondi

16

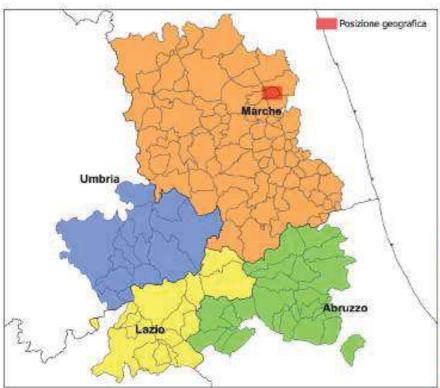
Nota: Le eventuali piccole discrepanze dalla curva di riferimento sono da imputare a disturbi ambientali limitrofi alla stazione di rilevamento e/o a condizioni di eccitazione che mutano nel tempo.







#### COMMISSARIO STRAORDINARIO RICOSTRUZIONE SISMA - 2016


Microzonazione Sismica di Livello 3 del Comune di Petriolo ai sensi dell'Ordinanza del Commissario Straordinario n. 24 registrata il 15 maggio 2017 al n. 1065

# MICROZONAZIONE SISMICA

REPORT MISURAZIONI MASW COD: MASW - 043036L3

# Regione Marche

Comune di Petriolo







Soggetto realizzatore Geol. Fabio Mariani Data e revisione

Dicembre 2017

CENTROMS

CENTRO PER LA

MICROZONAZIONE SISMICA
E LE SUE APPLICAZIONI



# Foglio Campagna acquisizione RIFRAZIONE/MASWELE SUE APPLICAZIONI Dott. Geol. Fabio Mariani

Campagna	043036L3 MASW	Data	04/10/2017
Profilo	SCUOLE	Operatore	Geol. Gianluigi
			Bartolini
Strumento	DoReMi	Condizioni Meteo	BUONE
Sorgente	Massa Battente	Formato Dati	.Seg
Frequenza Geofoni	4.5 Hz	Spaziatura Geofoni	5 mt.
Freq. Campionamento	512 Hz	Lungh. registrazione	75 mt.
	Coor	rdinate	
Inizio l	Profilo	Fine P	rofilo
Latitudine	43°13′38′′	Latitudine	43°13′18′′
Longitudine	13°28′04′′	Longitudine	13°28′000′′
Quota	260m	Quota	264

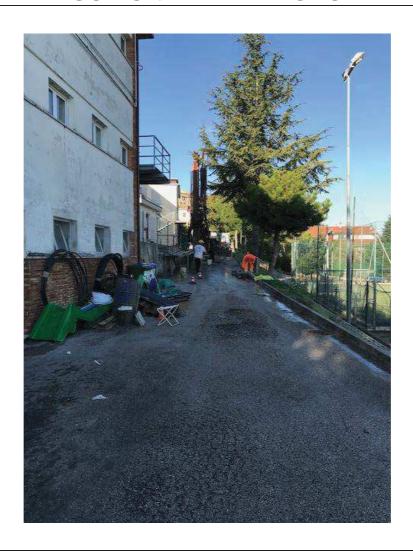




# Schema geometria

Energizzazioni: 0102	03	04	05	06	0708	309
Ricevitori:	01	06	12	18	24	

Energiz.	Posizione	Nome file	Posizioni	Tracce	Note (Rumore, Energ. singola,
N°	Energiz.		Ricevitori	inattive	stack Energ.)
3	10 mt	MASW-Off	2.5 mt	0	Stack Energ
3	10 mt	MASW-End	2.5 mt	0	Stack Energ


Continua

# Dott. Fabio Mariani GEOLOGO

ORDINE GEOLOGI REGIONE MARCHE N. 110

Studio di Geologia Idrogeologia Geotecnica

# MICROZONAZIONE SISMICA PROVA MASW PE-M5 COMUNE DI PETRIOLO



# ESEGUITA SCUOLE ELEMENTARI

Indagine geofisica tramite tecnica MASW Report off

# **Easy MASW**

La geofisica osserva il comportamento delle onde che si propagano all'interno dei materiali. Un segnale sismico, infatti, si modifica in funzione delle caratteristiche del mezzo che attraversa. Le onde possono essere generate in modo artificiale attraverso l'uso di masse battenti, di scoppi, etc.

## Moto del segnale sismico

Il segnale sismico può essere scomposto in più fasi ognuna delle quali identifica il movimento delle particelle investite dalle onde sismiche. Le fasi possono essere:

- P-Longitudinale: onda profonda di compressione;
- S-Trasversale: onda profonda di taglio;
- L-Love: onda di superficie, composta da onde P e S;
- R-Rayleigh: onda di superficie composta da un movimento ellittico e retrogrado.

## Onde di Rayleigh - "R"

In passato gli studi sulla diffusione delle onde sismiche si sono concentrati sulla propagazione delle onde profonde (P,S) considerando le onde di superficie come un disturbo del segnale sismico da analizzare. Recenti studi hanno consentito di creare dei modelli matematici avanzati per l'analisi delle onde di superficie in mezzi a differente rigidezza.

## Analisi del segnale con tecnica MASW

Secondo l'ipotesi fondamentale della fisica lineare (Teorema di Fourier) i segnali possono essere rappresentati come la somma di segnali indipendenti, dette armoniche del segnale. Tali armoniche, per analisi monodimensionali, sono funzioni trigonometriche seno e coseno, e si comportano in modo indipendente non interagendo tra di loro. Concentrando l'attenzione su ciascuna componente armonica il risultato finale in analisi lineare risulterà equivalente alla somma dei comportamenti parziali corrispondenti alle singole armoniche. L'analisi di Fourier (analisi spettrale FFT) è lo strumento fondamentale per la caratterizzazione spettrale del segnale. L'analisi delle onde di Rayleigh, mediante tecnica MASW, viene eseguita con la trattazione spettrale del segnale nel dominio trasformato dove è possibile, in modo abbastanza agevole, identificare il segnale relativo alle onde di Rayleigh rispetto ad altri tipi di segnali, osservando, inoltre, che le onde di Rayleigh si propagano con velocità che è funzione della frequenza. Il legame velocità frequenza è detto spettro di dispersione. La curva di dispersione individuata nel dominio f-k è detta curva di dispersione sperimentale, e rappresenta in tale dominio le massime ampiezze dello spettro.

## Modellizzazione

E' possibile simulare, a partire da un modello geotecnico sintetico caratterizzato da spessore, densità, coefficiente di Poisson, velocità delle onde S e velocità delle Onde P, la curva di dispersione teorica la quale lega velocità e lunghezza d'onda secondo la relazione:

$$v = \lambda \times v$$

Modificando i parametri del modello geotecnico sintetico, si può ottenere una sovrapposizione della curva di dispersione teorica con quella sperimentale: questa fase è detta di inversione e consente di determinare il profilo delle velocità in mezzi a differente rigidezza.

### Modi di vibrazione

Sia nella curva di inversione teorica che in quella sperimentale è possibile individuare le diverse configurazioni di vibrazione del terreno. I modi per le onde di Rayleigh possono essere: deformazioni a contatto con l'aria, deformazioni quasi nulle a metà della lunghezza d'onda e deformazioni nulle a profondità elevate.

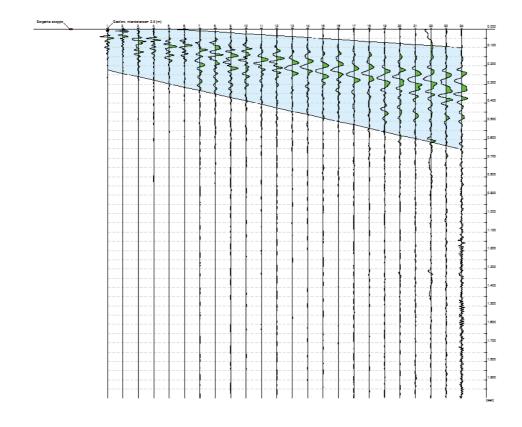
## Profondità di indagine

Le onde di Rayleigh decadono a profondità circa uguali alla lunghezza d'onda. Piccole lunghezze d'onda (alte frequenze) consentono di indagare zone superficiali mentre grandi lunghezze d'onda (basse frequenze) consentono indagini a maggiore profondità.

# Dati generali

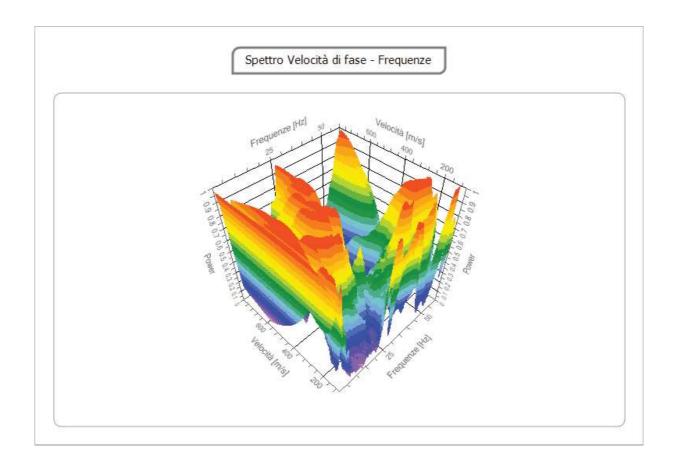
Operatore | Geol. Gianluigi Bartolini

Responsabile | Geol. Sara Abeti

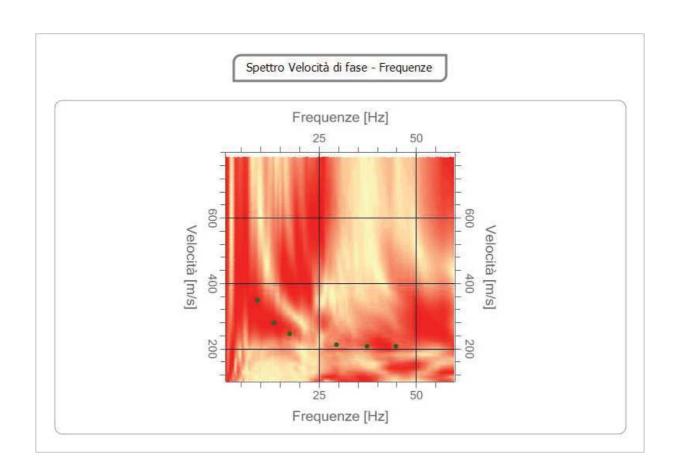

Geol. Gianluigi Bartolini

**Data** 04/10/2017 10:02

## **Tracce**


N. tracce	24
Durata acquisizione [msec]	2000.0
Interdistanza geofoni [m]	2.5
Periodo di campionamento [msec]	0.20

Operatore: Geol. Gianluigi Bartolini Responsabile: Geol. Sara AbetiGeol. Gianluigi Bartolini Data: 04/10/2017

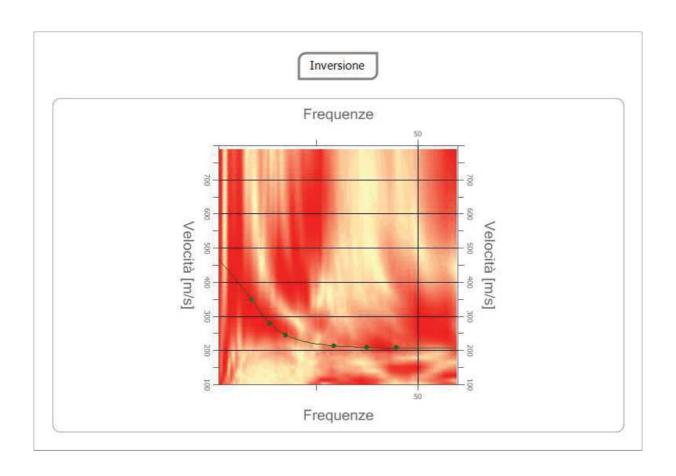



# Analisi spettrale

Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	100
Velocità massima di elaborazione [m/sec]	800
Intervallo velocità [m/sec]	1

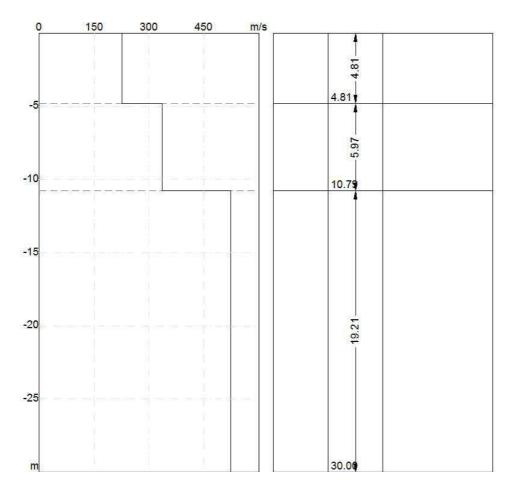


n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	9.2	348.7	0
2	13.5	279.5	0
3	17.4	246.2	0
4	29.5	212.8	0
5	37.5	207.7	0
6	44.8	207.7	0





## Inversione


n.	Descrizio	Profondit	Spessore	Peso unità	Coefficie	Falda	Vp	Vs
	ne	à [m]	[m]	volume [kg/mc]	nte Poisson		[m/sec]	[m/sec]
1		4.81	4.81	1800.0	0.2	No	369.2	226.1
2		10.79	5.97	1800.0	0.2	No	547.6	335.4
3		00	00	1800.0	0.2	No	855.4	523.8

Percentuale di errore 0.000 %

Fattore di disadattamento della soluzione 0.002







## Risultati

Suolo di tipo B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 360 m/s e 800 m/s (ovvero NSPT,30 > 50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina).

## Altri parametri geotecnici

n.	Profon	Spesso	Vs	Vp	Densit	Coeffi	G0	Ed	M0	Ey	NSPT	Qc
	dità	re	[m/s]	[m/s]	à	ciente Poisso	[MPa]	[MPa]	[MPa]	[MPa]		[kPa]
	[m]	[m]			[kg/m c]	n						
1	4.81	4.81	226.07	369.18	1800.0	0.20	92.00	245.33	122.66	220.79	N/A	1407.7
					0							7
2	10.79	5.97	335.35	547.63	1800.0	0.20	202.43	539.81	269.91	485.83	N/A	N/A
					0							
3	00	00	523.82	855.39	1800.0	0.20	493.90	1317.0	658.53	1185.3	0	N/A
					0			6		5		

G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

# Indice

Dati generali	4
Tracce	5
Analisi spettrale	6
Curva di dispersione	7
Inversione	9
Risultati	12
Altri parametri geotecnici	12
Indice	14

# Dott. Fabio Mariani GEOLOGO

ORDINE GEOLOGI REGIONE MARCHE N. 110

Studio di Geologia Idrogeologia Geotecnica

# MICROZONAZIONE SISMICA PROVA MASW PE-M5 COMUNE DI PETRIOLO



# ESEGUITA SCUOLE ELEMENTARI

Indagine geofisica tramite tecnica MASW Report end

# **Easy MASW**

La geofisica osserva il comportamento delle onde che si propagano all'interno dei materiali. Un segnale sismico, infatti, si modifica in funzione delle caratteristiche del mezzo che attraversa. Le onde possono essere generate in modo artificiale attraverso l'uso di masse battenti, di scoppi, etc.

## Moto del segnale sismico

Il segnale sismico può essere scomposto in più fasi ognuna delle quali identifica il movimento delle particelle investite dalle onde sismiche. Le fasi possono essere:

- P-Longitudinale: onda profonda di compressione;
- S-Trasversale: onda profonda di taglio;
- L-Love: onda di superficie, composta da onde P e S;
- R-Rayleigh: onda di superficie composta da un movimento ellittico e retrogrado.

## Onde di Rayleigh – "R"

In passato gli studi sulla diffusione delle onde sismiche si sono concentrati sulla propagazione delle onde profonde (P,S) considerando le onde di superficie come un disturbo del segnale sismico da analizzare. Recenti studi hanno consentito di creare dei modelli matematici avanzati per l'analisi delle onde di superficie in mezzi a differente rigidezza.

## Analisi del segnale con tecnica MASW

Secondo l'ipotesi fondamentale della fisica lineare (Teorema di Fourier) i segnali possono essere rappresentati come la somma di segnali indipendenti, dette armoniche del segnale. Tali armoniche, per analisi monodimensionali, sono funzioni trigonometriche seno e coseno, e si comportano in modo indipendente non interagendo tra di loro. Concentrando l'attenzione su ciascuna componente armonica il risultato finale in analisi lineare risulterà equivalente alla somma dei comportamenti parziali corrispondenti alle singole armoniche. L'analisi di Fourier (analisi spettrale FFT) è lo strumento fondamentale per la caratterizzazione spettrale del segnale. L'analisi delle onde di Rayleigh, mediante tecnica MASW, viene eseguita con la trattazione spettrale del segnale nel dominio trasformato dove è possibile, in modo abbastanza agevole, identificare il segnale relativo alle onde di Rayleigh rispetto ad altri tipi di segnali, osservando, inoltre, che le onde di Rayleigh si propagano con velocità che è funzione della frequenza. Il legame velocità frequenza è detto spettro di dispersione. La curva di dispersione individuata nel dominio f-k è detta curva di dispersione sperimentale, e rappresenta in tale dominio le massime ampiezze dello spettro.

## Modellizzazione

E' possibile simulare, a partire da un modello geotecnico sintetico caratterizzato da spessore, densità, coefficiente di Poisson, velocità delle onde S e velocità delle Onde P, la curva di dispersione teorica la quale lega velocità e lunghezza d'onda secondo la relazione:

$$v = \lambda \times v$$

Modificando i parametri del modello geotecnico sintetico, si può ottenere una sovrapposizione della curva di dispersione teorica con quella sperimentale: questa fase è detta di inversione e consente di determinare il profilo delle velocità in mezzi a differente rigidezza.

### Modi di vibrazione

Sia nella curva di inversione teorica che in quella sperimentale è possibile individuare le diverse configurazioni di vibrazione del terreno. I modi per le onde di Rayleigh possono essere: deformazioni a contatto con l'aria, deformazioni quasi nulle a metà della lunghezza d'onda e deformazioni nulle a profondità elevate.

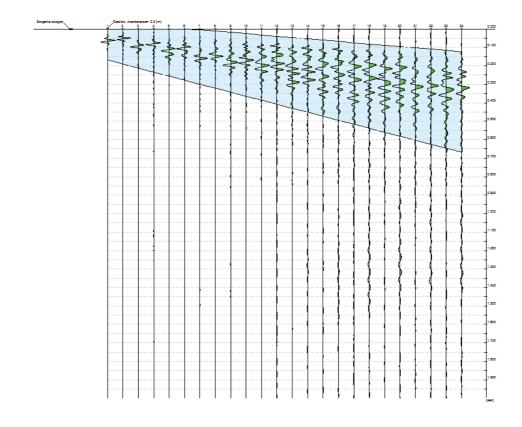
## Profondità di indagine

Le onde di Rayleigh decadono a profondità circa uguali alla lunghezza d'onda. Piccole lunghezze d'onda (alte frequenze) consentono di indagare zone superficiali mentre grandi lunghezze d'onda (basse frequenze) consentono indagini a maggiore profondità.

# Dati generali

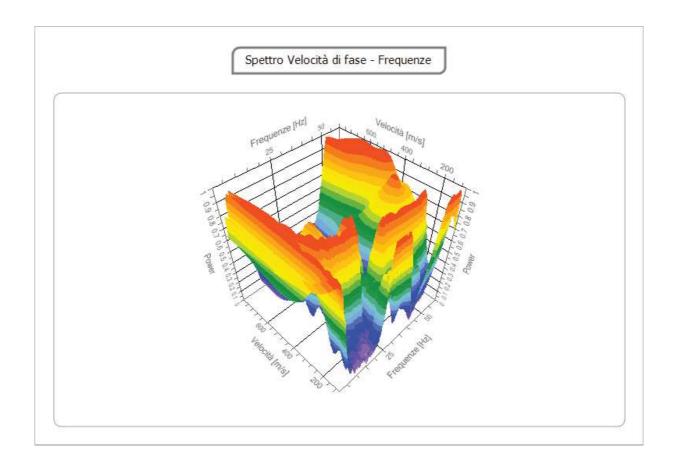
Operatore | Geol. Gianluigi Bartolini

Responsabile | Geol. Sara Abeti

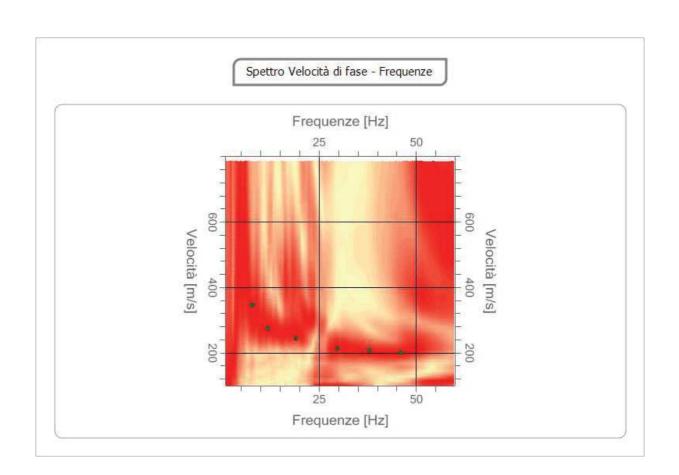

Geol. Gianluigi Bartolini

**Data** 04/10/2017 09:56

## **Tracce**


N. tracce	24
Durata acquisizione [msec]	2000.0
Interdistanza geofoni [m]	2.5
Periodo di campionamento [msec]	0.20

Operatore: Geol. Gianluigi Bartolini Responsabile: Geol. Sara AbetiGeol. Gianluigi Bartolini Data: 04/10/2017

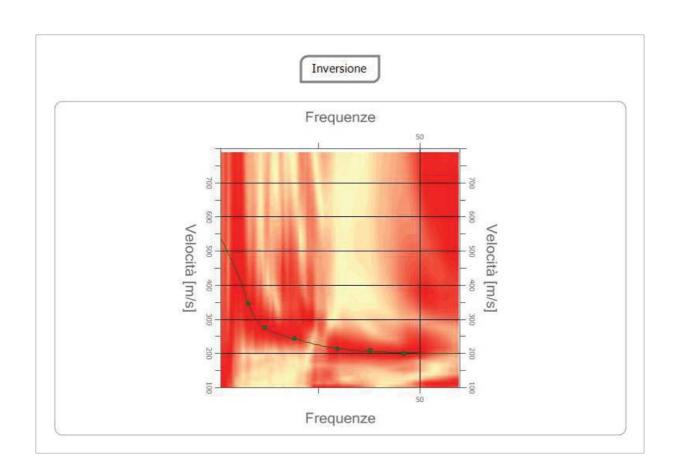


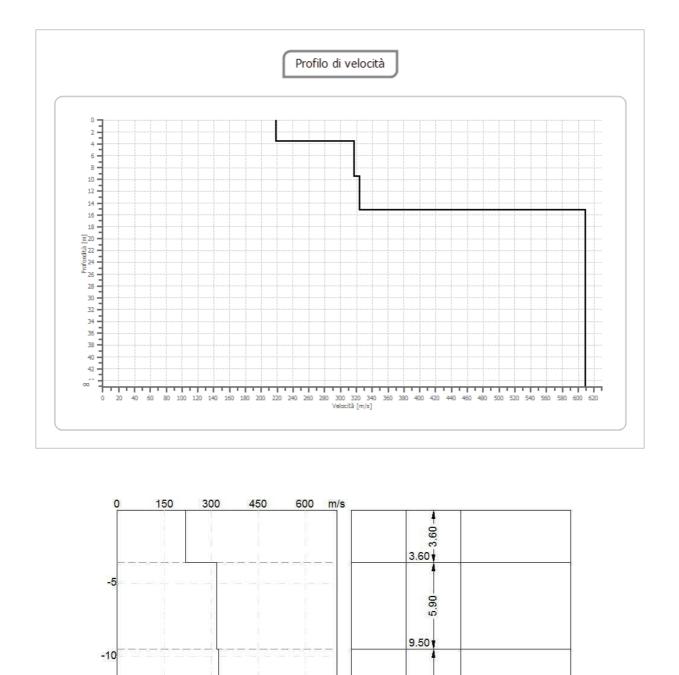

# Analisi spettrale

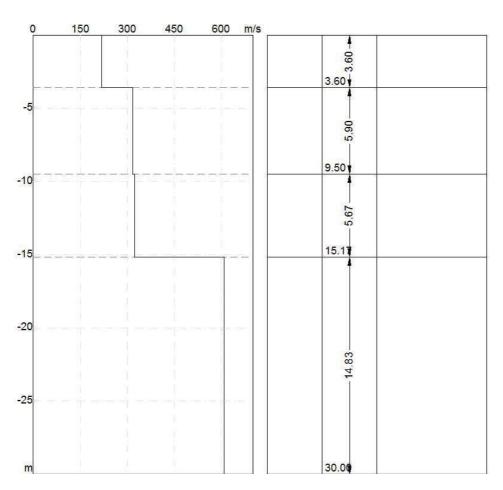
Frequenza minima di elaborazione [Hz]	1
Frequenza massima di elaborazione [Hz]	60
Velocità minima di elaborazione [m/sec]	100
Velocità massima di elaborazione [m/sec]	800
Intervallo velocità [m/sec]	1



n.	Frequenza	Velocità	Modo
	[Hz]	[m/sec]	
1	7.9	346.2	0
2	11.8	274.4	0
3	19.1	243.6	0
4	29.7	212.8	0
5	37.9	207.7	0
6	46.1	200.0	0





## **Inversione**


n.	Descrizio	Profondit	Spessore	Peso unità	Coefficie	Falda	Vp	Vs
	ne	à [m]	[m]	volume [kg/mc]	nte Poisson		[m/sec]	[m/sec]
1		3.60	3.60	1800.0	0.2	No	355.9	218.0
2		9.50	5.90	1800.0	0.2	No	517.5	316.9
3		15.17	5.67	1800.0	0.2	No	528.6	323.7
4		00	00	1800.0	0.2	No	994.7	609.1

Percentuale di errore 0.003 %

Fattore di disadattamento della soluzione 0.007







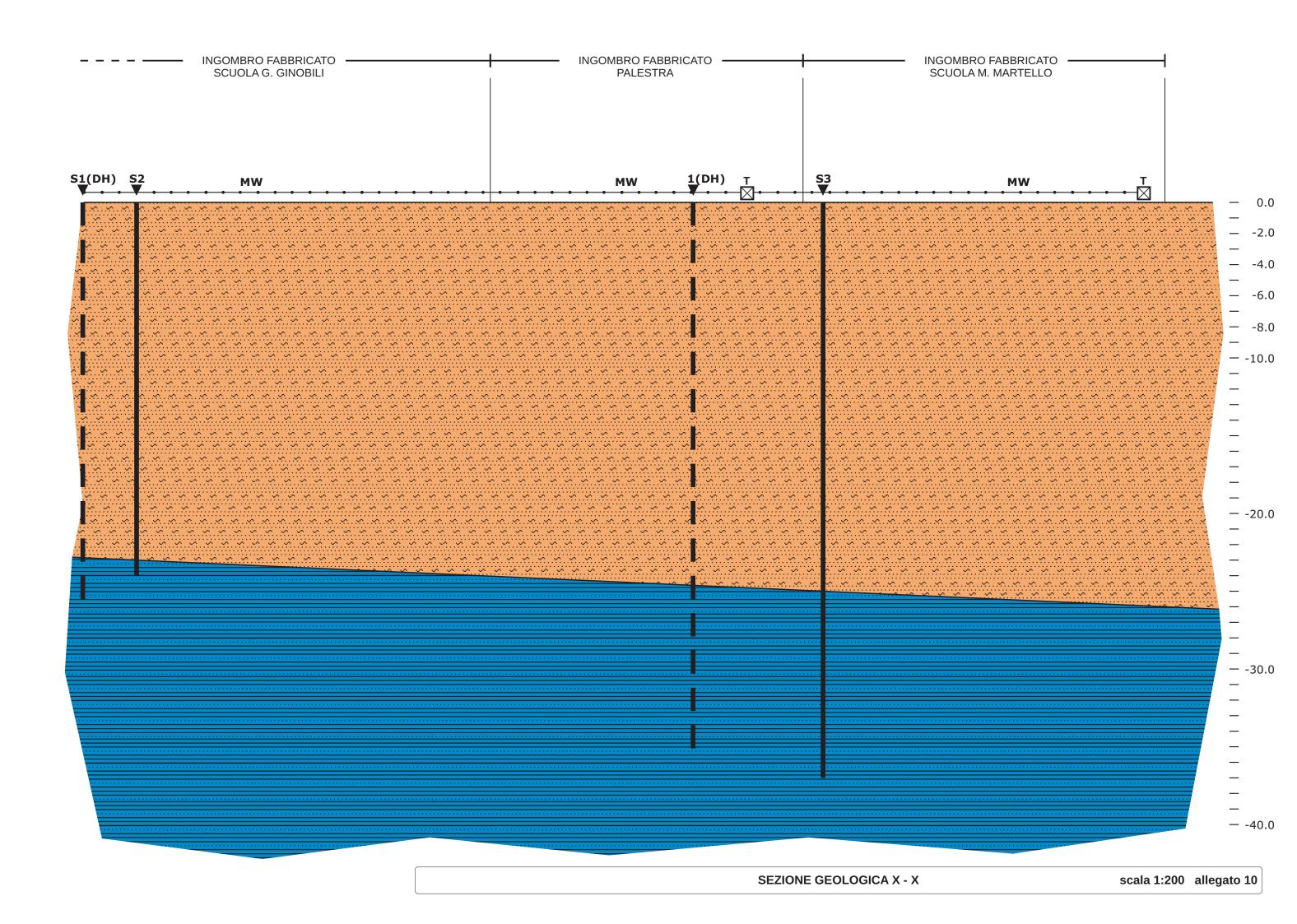
## Risultati

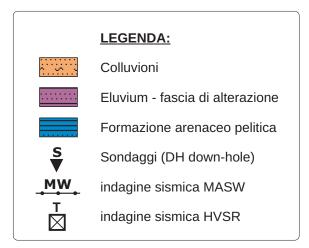
Suolo di tipo B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 360 m/s e 800 m/s (ovvero NSPT,30 > 50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina).

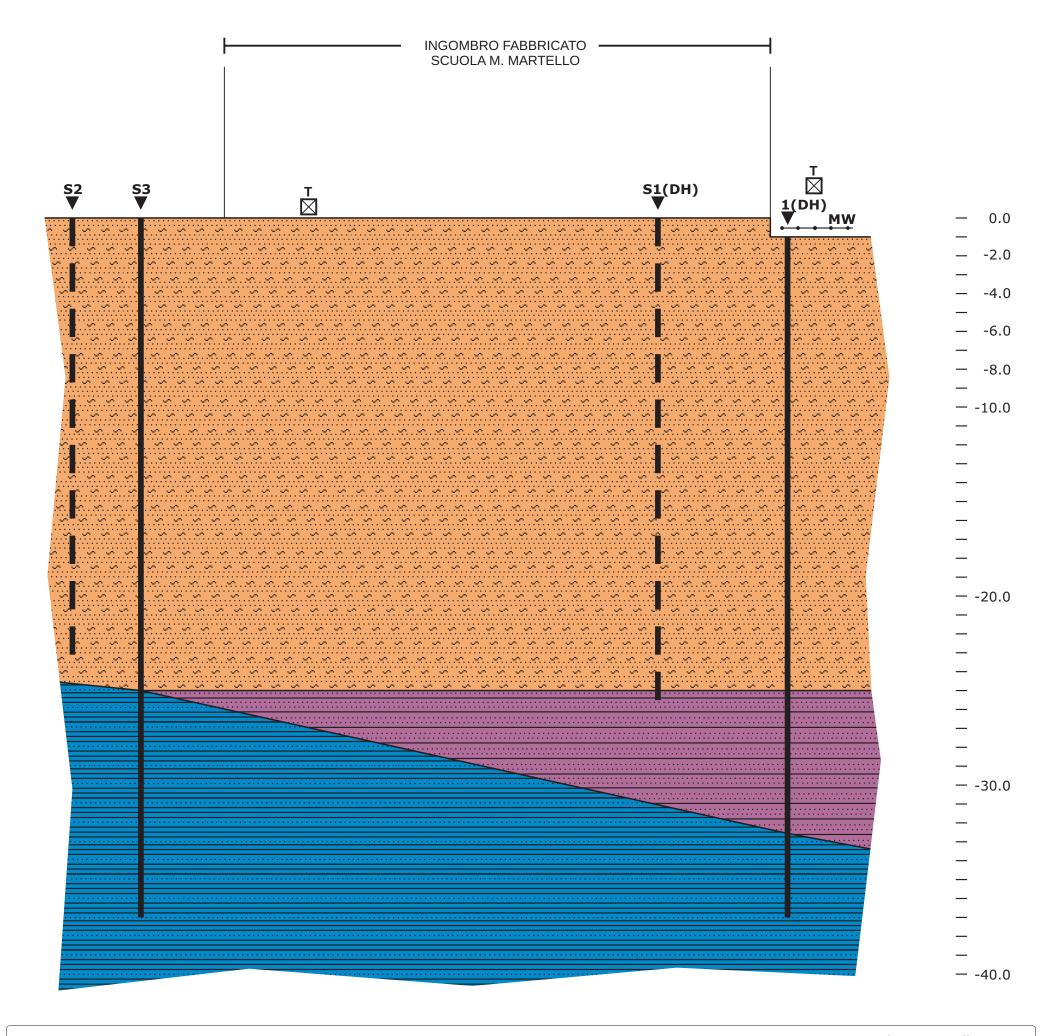
## Altri parametri geotecnici

n.	Profon	Spesso	Vs	Vp	Densit	Coeffi	G0	Ed	M0	Ey	NSPT	Qc
	dità	re	[m/s]	[m/s]	à	ciente	[MPa]	[MPa]	[MPa]	[MPa]		[kPa]
	[m]	[m]	[111/3]	[111/3]	[kg/m c]	Poisso n		[۱۷۱۱ ۵]	[۱۷۱۱ ۵]			[KI ű]
1	3.60	3.60	217.95	355.91	1800.0	0.20	85.50	228.01	114.01	205.21	N/A	1171.3
					0							0
2	9.50	5.90	316.90	517.50	1800.0	0.20	180.77	482.05	241.02	433.84	N/A	N/A
					0							
3	15.17	5.67	323.73	528.64	1800.0	0.20	188.64	503.03	251.52	452.73	N/A	N/A
					0							
4	00	00	609.12	994.68	1800.0	0.20	667.84	1780.9	890.45	1602.8	0	N/A
					0			1		2		

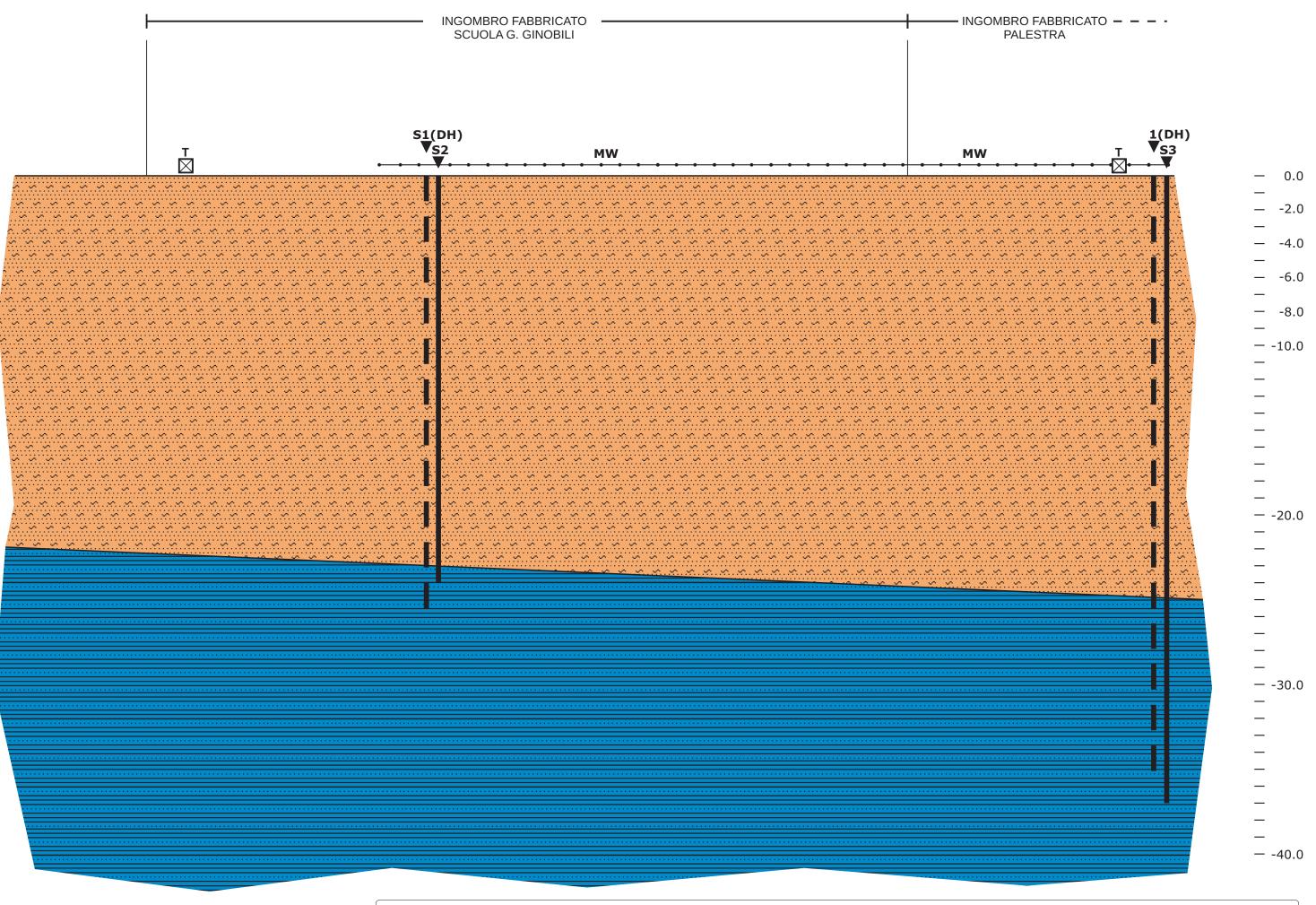
G0: Modulo di deformazione al taglio;


Ed: Modulo edometrico;

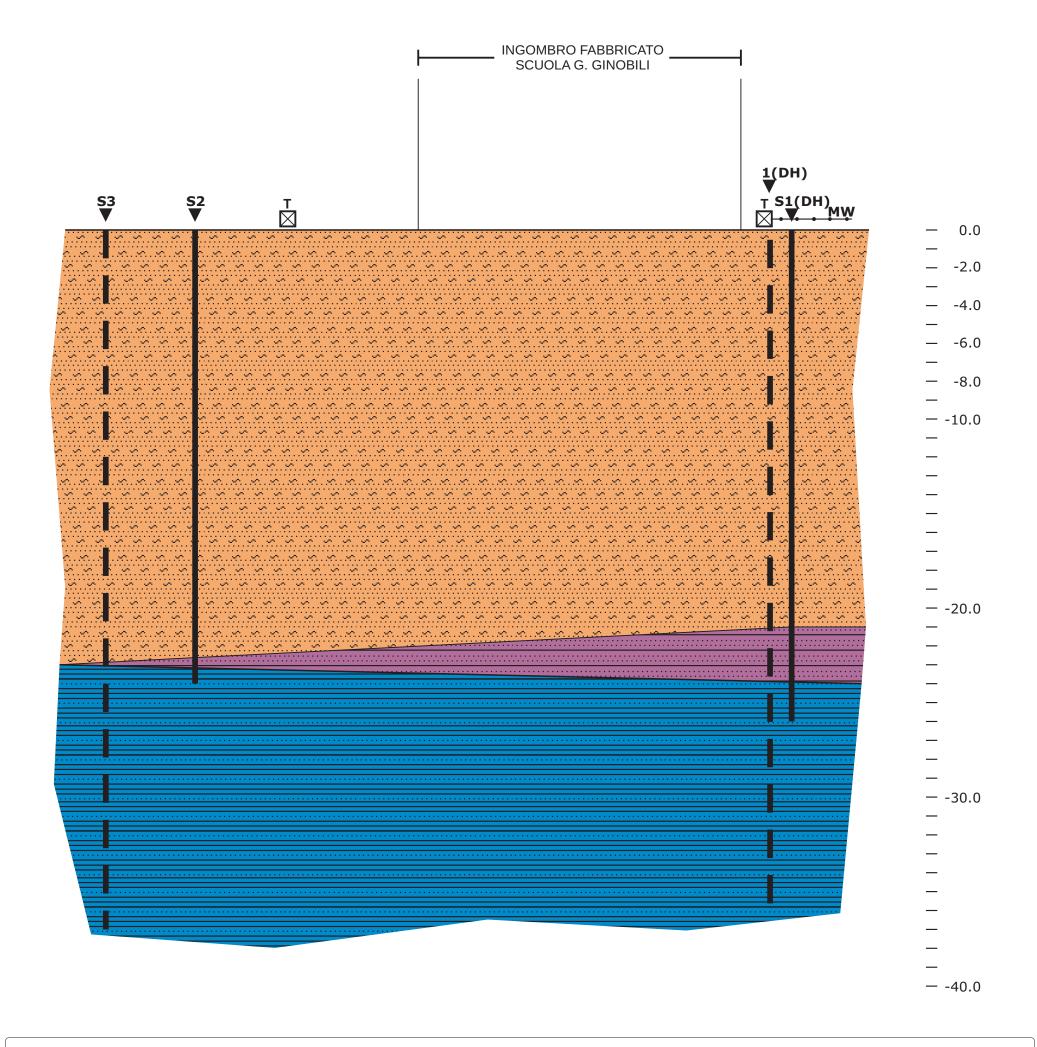

M0: Modulo di compressibilità volumetrica;


Ey: Modulo di Young;

# Indice


Dati generali	4
Гтассе	
Analisi spettrale	6
Curva di dispersione	7
nversione	9
Risultati	.12
Altri parametri geotecnici	12
ndice	14








SEZIONE GEOLOGICA Y - Y scala 1:200 allegato 10



# LEGENDA: Colluvioni Eluvium - fascia di alterazione Formazione arenaceo pelitica Sondaggi (DH down-hole) indagine sismica MASW indagine sismica HVSR



SEZIONE GEOLOGICA Y' - Y' scala 1:200 allegato 10